ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS based metabolomics

Ricardo R. Silva'* et al. (2013)
"LabPIB, DCM-FFCLRP-USP, Universidade de Sdo Paulo, Brazil

* rsilvabioinfo@gmail.com

Abstract

This document illustrates the usage of R package ProbMetab in two real metabolomics datasets. The
aim is to perform a complete analysis work-flow, from spectra preprocessing to network visualization,
to show the package integration capabilities with upstream tools (CAMERA and mzmatch.R in this
example) and with downstream tools (Cytoscape and DiffCor). In order to demonstrate the analysis
flow usefulness we used publicly available data from Trypanosoma brucei, causative agent of sleeping
sickness and data from Sacarum oficinarum (sugarcane), an important source of 1* generation biofuels.
The Trypanosoma brucei dataset was chosen to illustrate the annotation procedure since the published
experiment has a set of compounds identified with the aid of standard compounds, being specially
suited for validation purposes. The sugarcane original dataset was chosen to show how results provided

by ProbMetab can be used to study metabolism changes.

External files refereed in the text:

filter_comp.xls - Table showing the comparison of xcms — CAMERA/mzMatch to previously published as identified
compounds (level 1 identification [1]) IDEOM table.

inf_incorporation.xls — Table showing how each model component ranks the candidate compounds for previously
identified compounds.

classByReactions.xls — Table showing that the subset of reactions that were overlaid with reactions agrees with probability
ranking.

mzMatch_outputPOS.peakml — PeakML file for positive acquisition mode for mzMatch integration example.
mzMatch_outputNEG.peakml — PeakML file for negative acquisition mode for mzMatch integration example.
probmetab-casel-box00.Rdata — xcms pre-processing objects for T. brucei dataset.

probmetab-casel-box01.Rdata — CAMERA pre-processing objects for T. brucei dataset.

probmetab-casel-box02.Rdata — ProbMetab objects necessary for graph drawing for T. brucei dataset.
probmetab-case2-box00.Rdata - xcms and CAMERA pre-processing objects for S. oficinarum dataset.

probmetab-case2-box01.Rdata - ProbMetab objects necessary for graph drawing for S. oficinarum dataset.
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ProbMetab Case Study 1: Metabolomics dataset with internal standard compounds illustrates

annotation performance

Motivation

In order to demonstrate the analysis flow usefulness we used the publicly available data from
Trypanosoma brucei, causative agent of sleeping sickness, to illustrate the annotation procedure. The
published experiment has a set of compounds identified with the aid of standard compounds, being
specially suited for validation purposes. T. brucei cell cultures extracts were analyzed with RSL.C3000
UHPLC (Thermo Scientific) chromatography platform, with a ZIC-HILIC (SeQuant) column coupled
to a Exactive Orbitrap mass spectrometer (Thermo Scientific), operating in positive and negative
acquisition modes. The description of these experiments, acquisition and data availability can be found

in [2], and the data at:

http://sourceforge.net/projects/mzmatch/files/Ideom/IDEOM demo mzXML files.zip/download

The set of routines implemented in our ProbMetab package can be divided in three steps: 1) Ion
annotation extraction and data base matching; 2) Probability modeling and estimation and 3)
Comprehensive output representation. The three following sections show how ProbMetab approaches
these points. It is worth notice that step 1 (pre-processing) and step 3 (post-processing) are performed

using third party packages and ProbMetab's role is restricted to integration only in those steps.

Data Analysis

Ion annotation extraction and database matching

ProbMetab assumes that the most basic preprocessing steps to transform raw data into open
interchangeable format (e.g. .mzXML, .cdf, etc) were already achieved. Useful guidance to perform
that can be found elsewhere [3].

ProbMetab assumes peak detection, retention time correction and peak grouping [4, 5] in order to
perform mass peak to compound assignment. Starting from xcms compatible raw data files, that can be

downloaded from the mzMatch [6] project page as cited above, one starts an R section as:


http://sourceforge.net/projects/mzmatch/files/Ideom/IDEOM_demo_mzXMLfiles.zip/download

# load required libraries
library(ProbMetab)
library(xcms)

library (CAMERA)

# set nslaves for the number of available cores of your machine
# Follow xcms vignette to understand data structure
#

http://www.bioconductor.org/packages/release/bioc/vignettes/xcms/inst/doc/xcmsPreprocess.pdf

nslaves <- 4

# positive acquisition mode, directory: 'POS/'
xset <- xcmsSet(
"POS/", method='centWave', ppm=2, peakwidth=c(10,50),
snthresh=3, prefilter=c(3,100), integrate=1, mzdiff=-0.00005,
verbose.columns=TRUE, fitgauss=FALSE, nSlaves=nslaves

)

# negative mode

xset2 <- xcmsSet(
"NEG/", method='centWave', ppm=2, peakwidth=c(10,50),
snthresh=3, prefilter=c(3,100), integrate=1, mzdiff=-0.00005,
verbose.columns=TRUE, fitgauss=FALSE, nSlaves=nslaves

)

# load("probmetab-casel-box00.RData") # run to avoid deal with raw data and go directly to
examples

# align retention times across samples, grouping and integration

xsetP <- retcor(xset, method='obiwarp', plottype="none", profStep=1) #positive mode
xsetPnofill <- group(xsetP, bw=5, mzwid=0.015)

xsetP <- fillPeaks(xsetPnofill)

xsetN <- retcor(xset2, method='obiwarp', plottype="none", profStep=1) #negative mode
xsetNnofill <- group(xsetN, bw=5, mzwid=0.015)
xsetN <- fillPeaks(xsetNnofill)

#save(list=1s(all=TRUE), file="probmetab-casel-box01l.RData")
#run to save intermediary steps

The parameters used above were set for data obtained from orbitrap mass spectrometer [7]:

http://www.nature.com/nprot/journal/v7/n3/fig tab/nprot.2011.454 T1.html

Once a complete list of mass peaks is selected, we now perform a complexity reduction step, in
order to filter each ion redundant forms. This step can be accomplished in different ways within R
environment, among them through Astream [8], CAMERA and mzMatch.R libraries. In the present
illustration we use CAMERA and mzMatch:

# standard CAMERA processing
an <- xsAnnotate(xsetP)



http://www.bioconductor.org/packages/release/bioc/vignettes/xcms/inst/doc/xcmsPreprocess.pdf

an <- groupFWHM(an, perfwhm = 0.6)

an <- findIsotopes(an, mzabs = 0.01)

an <- groupCorr(an, cor_eic_th = 0.75)

anP <- findAdducts(an, polarity="positive")

an <- xXsAnnotate(xsetN)

an <- groupFWHM(an, perfwhm = 0.6)

an <- findIsotopes(an, mzabs = 0.01)

an <- groupCorr(an, cor_eic_th = 0.75)

anN <- findAdducts(an, polarity="negative")

# load("probmetab-casel-box0l.RData") # run to skip the previous block

combine positive and negative acquisition modes, keeping track of individual modes.
It is possible to combine the acquisition modes setting positive or negative

as reference input table.

comb 1

camAnot <- combinexsAnnos(anP, anN)

camAnot <- combineMolIon(peaklist=camAnot, cameraobj=anP, polarity="pos")

= H =

# Extract and format a set of non redundant putative molecular ions from CAMERA annotation
# with ProbMetab

# comb 2

ionAnnotP <- get.annot(anP)

ionAnnotN <- get.annot(anN, polarity="negative")

# number of isotopic peaks and non redundant putative molecules
sum(ionAnnotP$molIon[,3]==1)
sum(ionAnnotP$molIon[,3]==0)

Once the initial annotation for different forms of the same ion (adducts and isotopes), is defined,
one can seek for a non-redundant set of putative molecules (after charge and possible adduct
correction) for further inference of compound identity. The diversity of fragments and adducts formed
during the ionization process adds high complexity to compound annotation [9]. Experience shows that
standard mass rules for adduct search may lose peaks, and specific rule tables must be setup for a given
experimental condition. In order to address this issue, a flexible workflow, which allows users to
integrate different methods, would improve true molecular ions recovery.

A standard format definition for an ion annotation table would allow one to obtain it from different
upstream tools. The ion annotation table has the following core information: exact mass of putative
molecule with experimental error; isotopic pattern associated; adduct form associated, and the original
reference to raw data. Our current implementation extracts the ion annotation from CAMERA objects.
Following this format one can integrate datasets built with other tools into the proposed downstream
analysis. As an example of integration we highlight how the mzMatch PeakML files can be added to

the downstream workflow, building on mzMatch methods to write xcms objects.

# This is the file automatically generated by IDEOM [10]: http://mzmatch.sourceforge.net/
# that was used to produce the analysis of filter comp.xls table.
#




# Below also follows how to integrate the mzMatch analysis to ProbMetab.
# The mzMatch package can be downloaded at

# http://mzmatch.sourceforge.net/tutorial.mzmatch.r.advanced.php

# Please set the working directory to where your files are

setwd("mzXMLfiles/POS")
rawfiles <- dir (full.names=TRUE,pattern="\\.mzXML*",6 recursive=TRUE)
outputfiles <- paste(sub(".mzXML*","" ,rawfiles),".peakml",sep="")

for (i in l:length(rawfiles)){
xset <- xcmsSet(rawfiles[i], method='centWave', ppm=2, peakwidth=c(5,100),
snthresh=3, prefilter=c(3,1000), integrate=1, mzdiff=0.001,
verbose.columns=TRUE, fitgauss=FALSE, nSlaves=2

)

PeakML.xcms.write.SingleMeasurement (xset=xset,filename=outputfiles[i],
ionisation="negative",addscans=2,
writeRejected=FALSE,ApodisationFilter=TRUE

}

library (mzmatch.R)

mzmatch.init (4000)

MainClasses <- dir ()

dir.create ("combined RSD_filtered")
dir.create ("combined RSD_rejected")
dir.create ("combined")

for (i in l:length(MainClasses)){
FILESf <- dir (MainClasses[i],full.names=TRUE,pattern="\\.peakml$",6 recursive=TRUE)
OUTPUTf <- paste ("combined/",MainClasses[i],".peakml",sep="")
if (length(FILESf)>0){
mzmatch.ipeak.Combine(i=paste(FILESf,collapse=","),
v=T,rtwindow=30,0=0UTPUTf,combination="set",
ppm=5, label=paste(MainClasses[i],sep="")
)
RSDf <- paste ("combined RSD filtered/",MainClasses[i],".peakml", sep="")
REJf <- paste ("combined RSD_rejected/",MainClasses[i],".peakml",sep="")

if (length(FILESf)>1){
mzmatch.ipeak.filter.RSDFilter (i=OUTPUTf,o0=RSDf,rejected=REJf,
rsd=0.8,v=T
)
else{
file.copy(OUTPUTE,RSDf)

}

INPUTDIR <- "combined RSD_filtered"

FILESf <- dir (INPUTDIR,full.names=TRUE,pattern="\\.peakml$")
mzmatch.ipeak.Combine(i=paste(FILESf,collapse=","),v=T,rtwindow=30,0="combined.peakml",6 combi
nation="set",ppm=5)
mzmatch.ipeak.filter.NoiseFilter(i="combined.peakml",o="combined noisef.peakml",v=T,codadw=0
.8)
mzmatch.ipeak.filter.SimpleFilter (i="combined noisef.peakml", o="combined_sfdet.peakml",
mindetections=3, v=T)
mzmatch.ipeak.filter.SimpleFilter(i="combined sfdet.peakml",o="combined highintensity.peakml
", minintensity=1000, v=T)
PeakML.GapFiller(filename = "combined highintensity.peakml", ionisation = "detect", Rawpath
= NULL, outputfile = "highintensity gapfilled.peakml", ppm = 0, rtwin = 0)
mzmatch.ipeak.sort.RelatedPeak(i="highintensity gapfilled.peakml",v=T,o="mzMatch_output.peak
ml",basepeaks="mzMatch_basepeaks.peakml",ppm=3,rtwindow=6)
annot <- paste("relation.id,relation.ship,codadw,charge")




mzmatch.ipeak.convert.ConvertToText (i="mzMatch output.peakml",o="mzMATCHoutput.txt",v=T,anno
tations=annot)

# The PeakML importing function does not work with gap filled files
# so, we have to prepare a PeakML annotated file.

mzmatch.ipeak.sort.RelatedPeak(i="combined highintensity.peakml",v=T,o="mzMatch_outputPOS.pe
akml",basepeaks="mzMatch basepeaks.peakml", ppm=3,rtwindow=6)

# import PeakML file as xcmsSet object
mzAnnotP <- get.Mzmatch.annot("POS/mzMatch outputPOS.peakml", onlyBP=FALSE)

# Repeat the process above to Negative mode to create a separate PeakML file
# this is how comb 3 (see below) was obtained

comb3 <- combineMolIon(mzAnnotP, mzAnnotN)

The combination of acquisition modes can be used as evidence to confirm a feature (peak
associated to a retention time) as a true positive peak when it appears in both modes, and to increase the
sampling power for molecules that ionize best in one mode. The package CAMERA provides ways to
combine acquisition modes searching raw data for mass differences which obey user provided ad hoc
rules (comb 1 in Table 1). We also provide an algorithm to combine individual ion annotations (comb 2
in Table 1) since it is hard to anticipate all possible ion rules in CAMERA's algorithm. Additionally to
acquisition mode combination, one can chose to select only peaks with isotope/adduct evidence, or add
non annotated peaks with simple heuristics as [M-/+H] (comb 2+ in Table 1), we refer to package

manual pages for parameter details.

# include CAMERA non-annotated compounds, and snr retrieval

# comb 2+

ionAnnotP2plus <- get.annot(anP, allowMiss=TRUE, xset=xsetPnofill, toexclude=c("blank",
"medium”, "QC"))

ionAnnotN2plus <- get.annot(anN, polarity="negative", allowMiss=TRUE, xset=xsetNnofill,
toexclude=c("blank", "medium", "QC"))

# Following with comb 2+

comb2plus <- combineMolIon(ionAnnotP2plus, ionAnnotN2plus)
sum(comb2plus$molIon[,3]==1)

sum(comb2plus$molIon(,3]==0)

For the present dataset we achieved a data reduction with combination strategies (comb), ranging
from 74% (comb 2+, from peak groups to all possible putative molecular ions) to 86% (comb 2), as

shown in Table 1.




Table 1 — Peak extraction and representation for xcms preprocessing steps.

xcms CAMERA ProbMetab
peaks peaks per sample peak groups \ groups isotopes adducts \ all possible putative molecular ions isotopes adducts
pos 557071 24220 15270 8701 1595 2819 2546 1081 1465
neg 425602 18504 13226 7506 1039 2596 2111 737 1374
comb 1 4789/4096 1081/737 3708/3359
comb 2 4408 1718 2690
comb 2 + 8707 1718 6989
comb 3 6714 276 6438

pos/meg - acquisition mode; comb1/2/3 - strategies to combine acquisition mode 1- CAMERA's combinexsAnnos for

positive/negative modes, 2- ProbMetab's combMollon function, with optional parameter to include non annotated ions (+), 3 —

Integration to mzMatch, here using only “bp” and “potential bp” relationships.

Enhanced ion identification based on biological knowledge

In the following, we start from a reduced peak list and show how to combine spectral information
and biological knowledge to improve metabolite annotation.

The main approach to search for candidate compounds with mass lists obtained by high resolution
spectrometry, with soft ionization methods, is the search for exact mass in public compound databases.
Public databases such as ChemSpider, PubChem and METLIN [11-13] provide extensive lists of
compounds; however, these repositories do not have practical links to biological information, lacking
associated pathways and reactions information. Moreover, these information sources bring synthetic
compounds that are generally not present in biological matrices, and, therefore, add unnecessary
complexity to the search space, thus hindering manual curation. Kind & Fiehn 2006 [14] concluded
that the ideal would be to combine the use of databases aiming to be exhaustive with databases that
have biological context, and this strategy has been used for making custom databases [6].

As a critical step, we build as biologically-driven as possible the database into which candidate
peaks are searched on. First, we define a tabular format, inspired by mzMatch format. That format
contains mandatory information: unique identifier, molecular formula and reactions that a compound is
involved in. This information is strictly required for database matching and modeling, as explained
below. Additional fields with links to external databases, pathways, structural information, etc, may be
added.

As the public databases are constantly evolving, we provide online access (through dedicated API)
to compound information of two main metabolic network databases with biological context to
compounds, MetaCyc and KEGG [15, 16]. Additionally, as we believe that genome-scale metabolic
reconstruction [17] can potentially provide the best representations of a specific organism metabolism,
the ProbMetab package provides functionality to convert SMBL models [18] to the required tabular

format, allowing integration to metabolism repositories such as MetExplore [19]. In the analyzes flow



presented here we used the KEGG (REACTION) database for exact mass matching.

# this mapping of compounds-to-reactions from KEGG is automatically loaded with ProbMetab
DB <- KEGGcpds
reactionM <- create.reactionM(DB, comb2plus, ppm.tol=8)

As illustrated in the ion extraction section, the choice of which subset of ion table will be used for
downstream analysis can vary according to experimental setup. For now on, we assume that we have
extracted a subset of non redundant putative molecule peaks, and have to deal with the uncertainty of
assigning these peaks for known molecular formulas in a given database.

To illustrate the downstream analysis we choose the comb 2+ strategy where we have 8707 non
redundant putative molecules from mass spectra, of which 1718 peaks (20%) have putative isotope
peaks associated (Table 1). From all those putative molecules, 1386 (16%) have at least one candidate
inside the mass search window (8 p.p.m) and 757 (54% of 1386) show two or more possible competing
candidate compounds (matching formulas in the given mass window), highlighting the uncertainty in
the assignment. It is known that there are still many compounds unknown in databases and that the
number of possible different metabolites sampled by a single experimental technique is limited [20]. At
this step we still have some mass peaks assigned to different compounds, since CAMERA (the peak
summarizing tool chosen here) provides more than one possible annotation for some peaks. This is a
desirable feature since, in the context of an exploratory analysis, we would investigate all possible
annotations. It is important to note that a conservative mass window was used, which allows candidate
overlap, choice which is justifiable in the analysis context of ranking and filtering, detailed in the

following.

Probability modeling and estimation

With the list reduced to an observable subset of 757 mass to compound assignments with two or
more candidates, we have now to try to rank these candidates with the information and knowledge
available. For this we will use the model proposed below incorporating the likelihood of three
components: observed isotopic ratios (for now we are considering only the proportion of molecules
containing a single “C atom — "C"C,, molecules [21]), the connection between compounds and
retention time prediction error.

The relative isotopic abundance is very important to filter candidate formulas for a given mass

[14]. However, there are few assessments on how accurate are the intensity measurements across



different mass spectrometry platforms, and practical ways to incorporate this information to mass
annotation workflows, as exception the MZmine [22], that present challenges to automatically integrate
with tools on R environment. One method to incorporate this information was presented by Weber et al.
(2011) [21], the authors have shown that relative isotopic abundance have an offset in the prediction of
the carbon number dependent of Signal to Noise Ratio (SNR), for the measured peak intensity. Taking
the SNR in account the authors were able to correctly assign 44% of peaks to formulas.

In the present Trypanosoma brucei Exactive Orbitrap dataset, we were able to retrieve putative
isotope "*C"C.1) peaks for 30 compounds (among the 93 compounds with known identity), for which
we know the true identity. For this set of compounds we can try to recover the SNR and estimate the
carbon offset for defined intervals of SNR, and with that, build a formula filter. As shown in Figure 1
for low values of Signal to Noise Ratio we have low confidence predicting the carbon number with the

intensity ratio [23].
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Figure 1 - Estimates of carbon number offset with Relative Isotopic Abundance for compounds of
known identity. Cgs values (empirically calculated number of carbons minus actual number)
against SNR of *C"C,.; peaks. Vertical lines represents the bins proposed by Weber et al. (2011)
and red asterisks the Cg mean for each bin.

Using the Cai offset estimated by this approach we can implement a filter in the form (mean
+offset) * 30, proposed by [21], where O is the standard deviation. In Figure 2 it's shown, that the
simple filter, mean * 30, without the offset, misses the true carbon number for almost all compounds.
The filter with the offset recovers all but two true compound carbon numbers. The only mistakes are
compounds 19 and 22 (x-axis of Figure 2). This could be easily solved decreasing the bin size, which
should reduce the offset for these compounds.

For the present subset of compounds only 11, 21 and 29 have candidate formulas (2, 4 and 2
different candidate formulas) with different number of carbons, and among them, only compound 21
had one formula (with 9 carbons) outside the filter range. For databases of compounds associated to
biological knowledge the filter seems to have a narrow application. However, as shown below, the

information of reaction can be codified from different sources, including the simulated possible

formulas, case where the filter have been shown to be very useful.
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Figure 2 - Representation of a Relative Isotopic Abundance filter for carbon number. The filter
on the right represents the simple filter, using raw sample predictions, and the left plot represents
the use of the additional estimated carbon offset. The rectangles represent the filter, the points the
estimates for repeated samples and the asterisks the true number of carbons in the molecule.

# number of masses with candidates inside the fixed mass window
# and masses with more than one candidate
length(unique(reactionM[reactionM[,"id"]!="unknown",1]1))
sum(table(reactionM[reactionM[,"id"]!="unknown",1])>1)

# Calculate the ratio between observed and theoretical isotopic patterns.

# If you don't have an assessment of carbon offset to carbon number prediction

# skip this step and use the reactionM as input to weigthM function.

isoPatt <- incorporate.isotopes(comb2plus, reactionM, comb=1, samp=12:23, DB=DB)

# calculate the 1likelihood of each mass to compound assignment using mass accuracy, and
isotopic pattern, when present
wl <- weightM(isoPatt,intervals=seq(0,1000,by=500), offset=c(3.115712, 3.434146, 2.350798))

# codify the relation between compounds, given by reaction present in the biological
database DB
w <- design.connection(reactionM)




With the likelihood model at hand we have to provide a practical way to codify possible compound
reactions. Previous works have shown that non random mass differences are correlated in replicated
biological samples [24, 25]. These mass differences can be attributed to known metabolic reactions,
and also be used to investigate new reactions. Although being very interesting in the context of an
exploratory analysis, we chose to concentrate in the known metabolism universe, trying to focus in
previous described metabolic reactions, and thus avoiding spurious connections of mass differences.
There is clearly a tradeoff between the usage of known reactions or generic mass differences and the
two are complementary. We show here the steps required to integrate mass differences to our approach.

If one has a set of valid formulas with unique identifiers as in:

id name formula mMass
1 ¢001 thymidine C10H14N205 242.09
2 002 thymidine (-H20) C10H12N204 224.08
3 003 uracil C4H4N202 112.03
4 c004 uracil (-H) C4H3N202 111.02
5 ¢005 Glyecerone phosphate C3H706P 170.00
6 ¢006 Glycerone (-H2PO3) C3H603 90.03

and wants to match these formulas against masses from a typical spectrometry experiment:

# Example of generic mass differences to ProbMetab modeling framework
exp_masses

rt massObs

[1,] 1035 242.09100

[2,] 500 224.07900

[3,] 711 90.03215

reac_matrix <- matrix(0, ncol=4)
ppm.tol <- 10

# match masses in a given mass window
for(i in l:nrow(exp masses)) {
logical <- abs(((exp masses[i,2]-db.mass)/db.mass)*10%6) < ppm.tol
if (sum(logical)){
reac_matrix0 <- cbind(matrix(exp masses[i,], nrow=1l),
as.matrix(valid formulas[logical,c("mass", "id")]))
}

reac_matrix <- rbind(reac_matrix, reac_matrix0)

}

reac_matrix <- reac_matrix[-1,]

Now, with the possible compound formula to masses attributions, one can search a list of generic
reactions, with unique identifiers, and relate compounds to reactions. For a given list of generic

reactions, as




reaction reaction.name mass.diff reaction.id

1 -H20 Loss of Water 18.01 1001
2 -H Loss of Hidrogen 1.01 1002
3 +C2H20 acetylation 42.01 1003
4 +CO2 Carboxylation 43.99 1004
5 -H2PO3 phosporilation 80.97 1005

we can use that list and build a matrix similar to reactionM matrix, shown above, allowing the

integration to the analysis flux.

reac_matrix <- cbind(reac_matrix, rep("", nrow(reac_matrix)))
m diff <- outer(as.numeric(reac_matrix[,3]),
as.numeric(reac_matrix([,3]), "-"
)
for(i in l:nrow(m diff)){
for(j in l:ncol(m diff)){
log <- abs(m _diff[i,j])> gen_reactions[,3]-0.01 &
abs(m_diff[i,]j]) < gen_reactions[,3]+0.01
if(sum(log)){
reac_matrix[i,5] <- paste(gen_reactions[log,4],
collapse=";")

}
}

cnames <- c("rt", "massObs","massDB", "id", "reactions")
colnames(reac_matrix) <- cnames

reac_matrix

rt massObs massDB id reactions

1 "1035" "242.091" "242.0903" "cO01l"™ "rO0O1"

2 "500" "224.079" "224.0797" "c002" "ro0Ol1"

6 "711" "90.03215" "90.0317" "cOO6" ™""

With the analysis above we saw that the formulas c001 and c002 may be related by the reaction
r001, and following this principle one can extend the list of generic reactions and use mass differences
in an exploratory analysis context. The next step (Output representation) will allow one to cross
putative reactions with (partial)correlations and export them in an user friendly visualization.

Instead of using a list of generic biochemical transformations we chose to use specific known
reactions, using the reactions stored in our previous step. As discussed in [24], the usage of generic
reactions can produce spurious connections, e.g., we observe a mass difference corresponding to a
transformation, but the true compounds can't participate to this reaction. The Figure 3 illustrates the

basic approach to use reference manually inspected repositories of biochemical reactions.
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Figure 3 — Example of KEGG reaction database to show how known reactions are codified as
entry to probabilistic model. The same matrix can be obtained from alternative reaction sources,

such as SBML models.

As preconceived by Rogers et al. (2011) every function of type f(xm, yc) that increases as a
compound y., of a vector with C candidate compounds, becomes a better candidate for a mass x., of a
vector with M mass peaks, can be used to add information about compound classification (See the main
text for a detailed explanation). In the present implementation, we should generate matrices of the same
format of wm.

To implement the idea of information incorporation, we use of retention time prediction, using the
idea presented in Creek et al. (2011) [26]. The authors proposed a model of quantitative relationship
between the structure and retention time of a compound (QSRR - Quantitative Structure and

Relationship Retention). A model of the form

p=1

(=) W.d,

i=0

where the dependent variable t; (retention time) is predicted by a set of molecular descriptors for each
compound d;, which is weighted for its contribution by j regression coefficients, and p is the number of
parameters in a model with intercept. To reproduce the result from Creek et al. (2012) we used the
compound descriptors available at IDEOM's DB sheet, and the standard compound measured retention

time in the RTcalculator sheet.

# Please install the suggested packages if you want to reproduce

# the retention time modeling




# install.packages(c( "bootstrap", "leaps", "mgcv"))
db <- read.csv("IDEOM v18 DB.csv")

rtTab <- read.csv("standardRetentionTime.csv")

head(rtTab)

Compound.Name...MW..to.. standard.RT calculated.RT X..error logD..3.5.
1 Imidazole-4-acetate 17.98 10.80 -40% -1.4

N-Acetyl-D-glucosamine 12.09 12.55 4% -3.2

Melatonin 5.71 6.16 8% 1.2

Phenylhydrazine 5.94 9.86 66% -0.5

4-Aminobenzoate 6.02 7.09 18% 0.7

Nicotinate 7.93 8.58 8% -0.2

AU WN

Now we have to format the data to run the regression model selection.

testM <- rtTab[,5:10]
predSet <- data.frame(id=reactionM[reactionM[,4]!="unknown", 4],
data=as.numeric(reactionM[reactionM[,4]!="unknown", 1])/60
)
11 <- sapply(predSets$id, function (x)
which(db[, "KEGGid." ]==
sub("cpd:","",as.character(x))
)
)
ll[which(unlist(lapply(ll, length))==0)] <- 41639
db2 <- cbind(db[,"KEGGid."],db[,21:49])
db2 <- rbind(as.matrix(db2), rep(0,30))
sapply(which(unlist(lapply(1l1l, length))>1), function(x)
11[[x]] <<= 11[[x]]1[1]
)
vl <- unlist(1l1)
cols <- ¢(3,4,5,6,8,9)
predM <- db2[vl, cols]

# some compounds have missing descriptors, for those is not
# possible to predict the retention time
predM[which(is.na(predM), arr.ind=TRUE)[,1l],] <- O

predM <- apply(predM, 2, as.numeric)

sum(apply(predM, 1, sum)==0)

testSet <- data.frame(id=rtTab[,1], data=rtTab[,2])
descData <- list(predM=predM, testM=testM)

With the formatted test set (the measured retention time and structure descriptors to standard
compounds) to estimate the model, and the prediction set (a matrix of structure descriptors to candidate
compounds) to have the retention time estimated, we will use the leaps package [27] to select a model

based on Mallows's Cp criteria.

# Reproducing Creek et al. (2012) to format the information to be added to the

# probabilistic model




myresult <- rt.predict(testSet, predSet, descData, voidTime=4.5)

# predicted retention factor
head(myresult$pred)
[,11]
[1,] 0.49353197
[2,] -0.28788740
[3,] 0.41521135
[4,] -0.08651121
[5,] 0.88894204
[6,] 0.88194981
myresult$ans$rawRLm
[,1]
[1,] 0.7898401

The R? is the same that IDEOM estimated, now we can translate the retention time prediction error
in a likelihood ranking of candidate compounds. We chose to design an exponential function in the

form

—e
1 o
=—e A

fle, =1

where A represents the scale parameter, which is set to the tolerated estimated error, and &, is the

measured error for each candidate compound.

myweight <- weightRT(myresult, reactionM)

With this likelihood function we can easily incorporate the information by multiplying the

increasing functions as shown below.

# Example of Hadamard product (element-wise), which allows easy insertion

# of information on the model.

myweight$wm[1:5,1:5]
(,11 [,2] [,3] [,4] [,5]

[1,] 0.48483338 0.00000000 0 0 O
[2,] 0.03745601 0.00000000 0 O O
[3,]1 0.00000000 0.46685613 0 0 0
[4,] 0.00000000 0.03785027 0 0 O
[5,] 0.00000000 0.00000000 1 O O

wm[l:5,1:5]

(.11 [,2] [,3] [,4] [,5]

[1,] 2.289289e-07 0.000000e+00 0.00000000 0 O
[2,] 2.289289e-07 0.000000e+00 0.00000000 0 O
[3,] 0.000000e+00 4.579618e-05 0.00000000 0 O
[4,] 0.000000e+00 4.579618e-05 0.00000000 0 O




[5,]1 0.000000e+00 0.000000e+00 0.06752744 0 O

wm[l:5,1:5]*myweight$wm[1:5,1:5]

V1 V2 V3 V4 V5

1

(S0~ OV I \S)

O O O ™

.109924e-07
.574762e-09
.000000e+00
.000000e+00
.000000e+00

oL NOO

.000000e+00
.000000e+00
.138023e-05
.733398e-06
.000000e+00

0.00000000
0.00000000
0.00000000
0.00000000
0.06752744

[N eNeNeNe)

[l eNeNeNe)

Now, with all information, potentially coming from different sources, we can use the Gibbs

Sampler as proposed by Rogers et al. 2009, and calculate the assignment of posterior probabilities:

# calculate the posterior probabilities according with the proposed model
X <- l:ncol(wl$wm)
y <- l:nrow(wl$wm) # These two will be wrapped in a the function in future

# should take about 30 minutes for a regular desktop computer

# (ubuntu 64bits, with 8gb of memory), with

# a problem of the same size (number of masses) of the presented in this document.
system.time(conn <- gibbs.samp(x, y, 5000, w, wlSwm))

# export the classification table, optionally as R matrix or .html file
system.time(ansConn <- export.class.table(conn, reactionM, comb2plus,
filename="AnalysisExample", html=TRUE, DB=DB))

The classification matrix provided by ProbMetab features the columns: experimental masses
(Measured Masses); ranked candidate compound list (Most Probable Compound); probability of each
candidate (Probability) - the correct way to interpret the probability of a mass to be assigned to a given
compound is: among the set of candidates presented, this is the most likely ranking according to model
assumptions. This interpretation is different from probability of a mass be a given compound, since the
model did not restrict the search space to the true metabolome, nor guarantees that a mass peak refers
directly to a metabolite's mass; entropy of probability distribution among the candidates (entropy —
from information theory); optionally the p-value from the t-test/anova between samples; and a
condensed ion annotation in the format: original mass# original retention time# isotopic pattern, if
present# adduct pattern, if present. The user can choose to export a html table, which will be associated
to extracted ions chromatogram (EIC - Extracted Ion Chromatogram) plots of all peaks, written to R
working directory.

The T. brucei dataset gives a good opportunity to show how we want apply our approach to
compound annotation. It was previously analyzed with IDEOM [10], and, according to IDEOM's

documentation (http://mzmatch.sourceforge.net/ideom/Ideom Documentation.pdf), “If metabolite



http://mzmatch.sourceforge.net/ideom/Ideom_Documentation.pdf

assignment remains ambiguous, the first matching metabolite in the DB is assigned”, resulting in static
ranking that may not be appropriated for different analysis scenarios.

As we show in the (external file filter_comp.xls, sheets “ideonRTnoRT” and
“MzmatchProbMetab”) we can recover the same amount of “TRUE peaks”, but the ranking provided
by associated information gives a dynamic ranking, that can be improved as one can model additional
information. In the comb 2+ filtering strategy we have recovered 93 compounds with known identities
(external file filter_comp.xls, sheet “cameraProbMetab”), out of 127 compounds previously identified
[10].

The identification based on retention time standards presented by Creek et al., 2011 [26] is very
interesting in the context of a targeted analysis, where a set of compounds is elected for tracking.
However, such approach has the drawback of time and money expenses, the limited number of purified
standards available, and the non-linear retention time deviation in Liquid Chromatography that
compromises the retention time predictions, as previously reviewed [28].

Nevertheless, implementing the retention time prediction of [26] as additional source of
information to the model by matrix multiplication, as shown above, we can rank candidate formulas
based on retention time prediction error. The compound ranking for “rt Lik Only” column shown in
Table 2 (see external file inf_incorporation.xls for a peak by peak ranking) represents the assessment of
retention time prediction based on know compound identities. If we don't have (or don't trust) in a
database with preferred identities ranked, as [10], the classification based on retention time prediction
error can be misleading, with a low number of compounds being classified as the correct 19.2% and
with a high number of incorrect rankings, 17%. If we look carefully to Table 3 we show examples of
whole classification were the retention time prediction was the only model component able to
distinguish the compounds N6-Acetyl-N6-hydroxy-L-lysine and N5-(L-1-Carboxyethyl)-L-ornithine,
that have same molecular formula and were not differentiated by its reactions with the other
compounds in the sample. This show how new information can be helpful, if the retention prediction

could be improved, or even used for a subset of compounds with small prediction error.



Table 2 — Comparison

among addition

of different sources of information to the probabilistic

model.
Class rt Lik Only Mass Lik Only MetSamp MATLAB ProbMetab R environment All
No defined classification 44 (56%) 66 (84.6%) 0 (0%) 0 (0%) 0 (0%)
Correct identity between higher probabilities 2 (2.6%) 2 (2.6%) 0 (0%) 0 (0%) 0 (0%)
Correct identity is the higher probability 15 (19.2%) 6 (7.7%) 47 (60.2%) 50 (64.1%) 49 (62.8%)
Incorrect identity is the higher probability 17 (21.8%) 4 (5.1%) 31 (39.8%) 28 (35.9%) 29 (37.2%)
78 (100%) 78 (100%) 78 (100%) 78 (100%) 78 (100%)

rt Lik Only — classification based on retention time error prediction likelihood, R implementation; Mass Lik Only —

classification based only on isotopic pattern (when present) and mass accuracies likelihood, erfc function on R implementation;

Mass Lik+connections: MetSamp MATLAB implementation — classification based on gaussian mass accuracy and KEGG

reaction connections; ProbMetab R implementation - classification based on erfc mass accuracy and KEGG reaction

connections; All - classification based on isotopic pattern (when present), mass accuracies, reaction connections and retention

time error prediction.

Using only the mass accuracy (“Mass Lik Only”) has a poor classification definition 7.7%, mainly
because of the isomers for a given formula. It can also be misleading for some mass windows where we
have a higher error [29], and for suboptimal preprocessing parameters where we have higher errors in
mass recovery.

We have used isotopic pattern carbon number prediction, as information associated to experimental
accuracy, to filter possible formulas. In our database matching only 30 out of the 93 compounds had
isotopic peaks recovered with CAMERA's standard search parameters. For those, only 3 had matching
formulas with different number of carbons (external file inf_incorporation.xls), and the isotopic filter
implemented was able to rule out only one formula, C9H15N409P (5-Amino-6-(5'-
phosphoribosylamino)uracil), which had its probability decreased (fixed decrease of 10 times, still
keeping the compound candidate in the list for manual inspection) to be assigned to mass 354.05, Table
3.

The Mass likelihood + connections (prior knowledge of metabolism) has the best response,
considering the trade-off of correct identities 64,1% and low incorrect identities 35,9% assigned to
masses (considering only the higher probability). The model using all probability components (“All” in
Table 2) had a influence from incorrect assignments of retention time component, hindering a high
number of global incorrect assignments.

If we look very carefully to peak by peak comparison (external file inf_incorporation.xls), we can
see that most of so called “incorrect” or “correct” assignments have a small probability above the
second candidate (around 1% higher), as the classifications of N6,N6,N6-Trimethyl-L-lysine in Table

3. In this scenarios it is most probable that we don't have enough information in the model to afford the



correct classification, additional information and manual curation should be used to inspect the
classification, in some cases the ranking helps to differentiate the most probable identities (“Correct
identity between higher probabilities” in Table 2) or to show to the experimenter that he has to further

investigate that mass.

Table 3 — Examples of probability attributions for different model components, with the correct

identity in bold.
rt Lik Only Mass Lik Only MetSamp MATLAB ProbMetab R environment All
Probability
N5-(L-1-Carboxyethyl)-L-ornithine 204.110633 0.081 0.5 0.69 0.672 0.09
N6-Acetyl-N6-hydroxy-L-lysine 0.919 0.5 0.31 0.328 0.91
Phenolsulfonphthalein 354.0558718 0.25 0.839 0.654 0.926 0.905
5-Amino-6-(5'-phosphoribosylamino)uracil 0.25 0.115 0.255 0.023 0.029
WIN56291 0.25 0.046 0.064 0.045 0.06
2-Caffeoylisocitrate 0.25 0 0.026 0.006 0.006
7,8-Diaminononanoate 188.1521096 0.5 0.5 0.472 0.446 0.444
N6,N6,N6-Trimethyl-L-lysine 0.5 0.5 0.458 0.48 0.482
L-Histidine 155.0688293 0.2 0.2 0.792 0.781 0.798
3-(Pyrazol-1-yl)-L-alanine 0.2 0.2 0.082 0.106 0.092
D-Histidine 0.2 0.2 0.043 0.034 0.036
Kininogen 0.2 0.2 0.041 0.039 0.043
Histidine 0.2 0.2 0.041 0.04 0.031

With the examples discussed above we wanted to highlight that sources of information can contribute
in different ways to compound classification and care must be taken interpreting the results. Here we
wanted to provide a systematic way to combine information, once we know how to model that information
through all metabolome sampling range. Taking into consideration the error rate of all model components
we can benefit of summarized ranked view when we have efficient visual tools, as discussed in the next
section. We have applied the MetSamp MATLAB implementation (the source code was kindly provided by
Prof Dr Simon Rogers from University of Glasgow under personal request) with precision adjusted to 6.25
x 102 (were two SD from mean is equivalent to 8 p.p.m), and using the unique masses (x) and compounds
(y) from reactionM matrix and connections from w matrix. After the processing we manually exported the
out.allsampcomp matrix from MATLAB and calculated the probabilities for the ranking presented in Table
3.

With our R implementation we want to highlight that, exporting the ranking provided by modeling
information associated with yet not modeled information (ion adduct pattern, chromatograph shape,
correlation) is essential to provide tools to allow the experimenter decided the true compound identity, and

which ones have impact in the conditions under investigation. In Table 4 we see that, considering the



ranking, not only the correct classification as in Table 3, up to 90% of the compound have their correct
identity among the first 3 top ranked probabilities, and with the help of our visualization strategies can led
to high quality compound annotation. We have tested our implementation against MetSamp
(http://www.dcs.gla.ac.uk/inference/metsamp/), in a regular desktop computer, running Ubuntu 12.10 64
bits, 8gb of memory, with a problem of the same size (number of masses) of the presented in this
document. ProbMetab took 38 minutes to run the gibbs sampler algorithm, against 138 minutes of

MetSamp's version.

Table 4 - Cumulative proportion of correct identity position of models presented on table 2.

Cumulative Proportion of Correct Identity Position

Correct Identity Position = MetSamp MATLAB ProbMetab R environment All
1 0.667 0.699 0.688
2 0.828 0.828 0.839
3 0.882 0.903 0.882
4 0.925 0.935 0.935
5 0.935 0.957 0.946
6 0.946 0.978 0.968

Comprehensive output representation

The main product of the probabilistic model is a list of ranked attributions, which depends on our
knowledge of the biological model and experimental setup. The lists can be quite extensive and the user
needs a proper representation to make sense of this data. The main output is a table that can be exported
as an R matrix or .html file and contain the rank of candidates.

One way to put together a post hoc check of predicted connections, and a biologically inspired
visualization is to cross reference the set of all possible reactions with (partial)correlation weighed
networks. Assuming that a given mass could have as identity one or more compounds, and each of this
compounds could have one or more connections to compounds candidates to other masses, the
generation and inspection of all possible networks will be infeasible, just as the inference of its
distribution for the probabilistic model. Instead of generating all possible networks one could treat each
mass as a node, and all possible reactions between its candidates to other mass candidates as edges.
This simple approach decreases the number of graphs to one, but a node still contains a high number of
possible identities and connections as associated information to analyze. If we cross that information
with correlations between masses in repeated samples, we reduce the possible connections and
compound identities responsible for this connections. We provide an algorithm to cross all possibilities

and automatically exports this networks to Cytoscape [30] (a biological network visualization


http://www.dcs.gla.ac.uk/inference/metsamp/

software).

This script is intended to reproduce the Figure 4,
as well as to provide a working example on the main features of ProbMetab
graph functions

Following this analysis we generate a graph with reactions overlaid with correlations
and export use additional information to provide formatting to this graph.

H= H = S H S

# calculate the correlations and partial correlations and cross reference then with
reactions
# load(“probmetab-casel-box02.RData”) # load the necessary objects to draw the graph

mw <- which(w==1,arr.ind=TRUE)
corList <- reac2cor(mw, ansConn$classTable[,-c(8:18)], corprob=0)

gr.cor <- ftM2graphNEL(corList$cor.vs.reac)
classTable <- ansConn$classTable
node.names <- apply(classTable[classTable[,4]!="",1:7], 1, function(x) paste(x[6], "-",
paste(strsplit(as.matrix(x[7]), "#")[[1]1][1:2], collapse="\n"), sep="")
)
node.names <- sub(""\\s+", "", node.names)
snode.names <- node.names[as.numeric(nodes(gr.cor))]

# Example of some edge and node attributes see export2graph man page to more details
form <- edgeNames(gr.cor)
form <- data.frame(form, form %in%
apply(corList$signif.cor[corList$signif.cor([,1]>0.75,2:3], 1, paste, collapse="~"))
form <- data.frame(form, form[,1] %in% apply(corList$signif.cor[corList$signif.cor[,1]1<(-
0.75),2:3], 1, paste, collapse="~")
)
Format the edge attribute table with exadecimal color codes
to export to Cytoscape. In this case red to positive correlations
higher than 0.75, and green to negative correlations smaller than
-0.75
cnames <- c("edge.name", "color.#FF0000", "color.#006400")
colnames(form) <- cnames

H= H =

# index of known identity compounds from Supplementary File 4

csel <- "119 393 1106 661 1264 418 482 423 1114 413 459 62 1136 1067 362 767 656 92 618 109
555 1291 516 1123 1128 553 379 701 242 302 697 356 1155 47 184 896 3 40 182 4 1098 41 1031
782 45 246 560 416 1088 778 81 51 88 31 383 24 352 1121 730 744 425 1120 120 370 1086 782
757 451 52 58 498 769 376 337 551 69 477 548 543 677 526 581 766 933 90 870 317 332 212 396
594 713 748"

csel <- as.numeric(strsplit(csel, " ")[[1]])

form2 <- nodes(gr.cor)

form2 <- data.frame(form2, form2 %in% csel)
cnames2 <- c("node.name", "lcolor.#0000FF")
colnames(form2) <- cnames2

# The index of all nodes
sn <- as.numeric(sub("("\\d+)-.+", "\\1", snode.names))

# Where the known compounds are in the vector of correlated nodes
coord <- sapply(csel, function(x) which(sn==x))

scoord <- coord[unlist(lapply(coord, length))!=0]

scoord <- unlist(scoord)

# names of known identity compounds from Supplementary File 4
cpdnames <- "AMP%Urocanate%Uracil%Pseudouridine 5'-phosphate%D-Ribose 5-phosphate%Guanine%D-




Sorbitol%Propanoyl phosphatet%Maleamate%L-Methionine%$sn-Glycerol 3-phosphate%N6,N6,N6-
Trimethyl-L-lysine%(S)-Malate%N6-Acetyl-L-lysine%L-Cysteine%Ascorbate%Glutathione
$Pseudouridine%Adenosine’5'-Methylthioadenosine%L-Cystathionine%Inosine%S-Sulfo-L-cysteine
$5-Amino-4-imidazole carboxylate%$Mesaconate$N-Acetyl-D-glucosamine%4-Guanidinobutanal%sS-
Adenosyl-L-methionine%alpha-D-Glucosamine l-phosphate%Glycine%RiboflavingL-2,4-
Diaminobutanoate%D-Xylonolactone%Xanthine%S-Adenosyl-L-homocysteine%D-Glucose$L-Arginine’L-
Lysine%L-Serine%Putrescine% (R)-3-Hydroxybutanoate%L-Glutamate%Urate%D-Gluconic acid%(S)-4-
Hydroxymandelonitrile%Hypoxanthine%Carnosine%L-Arabinose%L-Alanine%Citrate%Folate
$Isopyridoxal%L-Cystine%L-Asparagine$L-Glutamate 5-semialdehyde%Nicotinamide%L-Valine
$Taurine%2-Hydroxy-3-oxopropanoate$% (S)-3-Methyl-2-oxopentanoic acid%L-Histidine%L-Threonine
$Phenolsulfonphthalein%Imidazole-4-acetate%PyruvatetL-Gulonate%AllantoingN(pi)-Methyl-L-
histidine%Pyridoxamine3%L-Tyrosine%LL-2,6-Diaminoheptanedioate%3-(4-Hydroxyphenyl)pyruvate3L-
1-Pyrroline-3-hydroxy-5-carboxylate$Hypotaurine%Pantothenate¥N6-Acetyl-N6-hydroxy-L-lysine
$D-Glucosamine%N2-(D-1-Carboxyethyl)-L-lysine%sn-glycero-3-Phosphoethanolamine%Maltose%L-
Kynurenine%Cytidine%D-Glucuronolactone%Succinate$Thymidine%N-Acetylneuraminate 9-phosphate
$Glycerol%Diethanolamine%D-Glucose 6-phosphate%$Ethanolamine phosphate%L-Arginine phosphate
$CDP-ethanolamine%Deoxyribose"

cpdnames <- strsplit(cpdnames, "%")[[1]]

# replace the node label of compounds identified with the true compound name
scpdnames <- cpdnames[unlist(lapply(coord, length))!=0]
snode.names|[scoord] <- scpdnames

cpdnames <- as.character(sapply(classTable[classTable[,2]!="unknown",2], function(x) D
B$name[DB$id==as.character(x)])
)
classTable <- as.matrix(classTable)
classTable[classTable[,2]!="unknown",2] <- cpdnames

# create an initial visualization without leaving R environament
createJSONToCytoscape(gr=gr.cor, node.label=snode.names)
openGraph("network. json", classTable=classTable, openBrowser=TRUE)

# This functions extracts pathway information from KEGG API,
# and needs the KEGG codes, so we have to load the original
# classification table again

cpdInfo <- create.pathway.node.attributes(ansConn$classTable, graph=gr.cor, DB=DB,
filenamel="pathl.noa", filename2="path2.noa", organismId="tbr")

create.reaction.edge.attributes(classTable, graph=gr.cor, w=w, reactionM=reactionM, DB=DB,
filename="reac.eda")

export2cytoscape(gr.cor, node.label=snode.names, cwName="test4",node.form=form2,
edge.form=form, cpdInfo=cpdInfo, classTable=classTable)

We are going to illustrate our graph representation with CAMERA filtering approach, in which we
have recovered 93 correct identities, comb 2+ strategy (external file filter_comp.xls, sheet
“cameraProbMetab”). If we look among these compounds, which ones have an absolute correlation
higher than 0.75, and overlay with a set of possible reactions, we can export them colored in blue
within the entire correlation network as in the Figure 4. For 32 identified compounds with significant
correlations we had the identities confirmed by 20 (62.5%) (see external file classByReactions.xls for a
detailed analysis). With our visualization strategy the user can see all the possible candidates, the

probabilities of each one and the possible reactions for the correlation represented by the node. The




overlaying strategy was very efficient to show that, when there is a correlation between the node x and
node y the known reactions between the possible identities of those nodes only led to few possible
compounds, many times to only one compound (external file classByReactions.xIs).

The automatic exporting from R to Cytoscape [31] allows the user to navigate through complex
networks, with information on pathways and reactions associated as node and edge attributes,
respectively, allowing search the pathways dynamically inside the network with Cytoscape filters. We
can also export the graph format to a web server in a way that a user do not need to install Cytoscape,
and use only R environment, sending the file to a web browser (see an example at

http://labpib.fmrp.usp.br/methods/probmetab/).
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Figure 4 — Representation of peak table of extracted mass peaks exported as correlation weighted
network overlaid with reaction network. The main information exported to Cytoscape window
can be seen in Cytoscape's Data Panel. With the algorithm the node 425 (mass 155.06 in Table 3)
had 6 possible identities, and each identity had a set of possible reactions with other mass
candidates. However, the unique candidate reactions that overlaid with correlation are reactions

that led to L-Histidine.

The present data set was used in [2] as Figure S3 to discuss the effect of the drug Nifurtimox on T.

brucei, and the authors state “Nifurtimox (mass: 287.0577, RT: 5.25 minutes) was observed in all



treated samples, in addition to a mass (mass: 257.0834, RT: 13.5 minutes) consistent ..” . In the present
analysis those peaks were found, mass peaks 105 and 599 (one can see the peaks creating the
ansConn$classTable matrix as shown above), but no reaction linking this two peaks was present in our
matching database. The graph inspection also shows many identities associated to aminoacid

biosynthesis, the process of interest to investigate under drug treatment in the original work.

Conclusions

The restricted sampling nature of a specific analytical workflow (from sample preparation, to data
processing), the complexity of ionization and the lack of knowledge on metabolome extension renders
metabolomics to a far more limited capabilities than anticipated by their practitioners [32]. As time
passes by and knowledge improves, we know better the gaps in sampling and the metabolite species
subset that we can actually observe in each experimental setup, therefore we have to use an extensible
analysis workflow to incorporate all knowledge we gain with this evolution. Dividing the processing in
tree steps: 1) lon annotation extraction and data base matching; 2) Probability modeling and estimation
and 3) Comprehensive output representation, we hope to stress the importance of experimental
information incorporation and biological context to capitalize the usage of available knowledge.
Moreover, we supply an initial implementation in an environment that supports many auxiliary tools
which can improve the annotation.

From the perspective of information incorporation we already have established sources of
information that can be modeled and added to the present analysis, as sample preparation specificity
[33], retention time [26], and MS/MS information [22]. As these ideas are developed all this
information can start to be shared and better quality annotations will be provided. This information can
be accessed from central repositories through API access, as functions provided to access biological
context information. Databases such as MetaboLigths [34] should allow comprehensive information
exchange giving opportunity to model different sources of information.

As the sampling nature of a given general untargeted LC-MS technique approach hamper us to
observe all compounds of specific pathways, the best way to represent such sample would be
superimposing it in the metabolic network. The correlation weighted networks have been used to map
biochemical reactions to mass peaks [24, 25]. Partial-correlations may be biased because of hidden
variables (e.g. enzymes) or non-linear relation between variables [35]. On the other hand, there is
evidence showing that they can better represent relation between compounds, excluding the effect of
other variables [36]. Therefore allowing the interchangeable use of the two approaches is important to

spot specific metabolic changes.



We had implemented and extended a method to annotate compounds, in a framework that allows
the introduction of prior knowledge and additional spectral information. With the R package
ProbMetab we provide means to summarize the results of series of analysis needed to extract

information from complex high dimensional mass spectrometry data, and help the experimenter to

track metabolism changes in the process of interest.



ProbMetab Case Study 2: Original Metabolomics dataset from sugar cane leave, illustrates

searching metabolism alterations during stress conditions

Motivation

The agricultural breeding traits, such as height, number of fruits, fruit size, dry weight, are
controlled by the interaction and co-regulation of different metabolic pathways. The integration of
information coming from varied molecular and genetics studies is the main challenge to elucidate the
mechanism controlling these pathways. As an example, the mechanisms that regulate the synthesis,
transport and accumulation of sucrose in sugar cane has been extensively studied since the middle of
last century, revised [37, 38], however, conflicts revised in 1995 are still present in 2005, with the
location of key enzymes and transporters still unknown.

Metabolomics is increasingly playing its role unraveling mechanistic metabolism changes, giving
information of important pathways for phenotypes of interest [39, 40]. With the present study case we

try to show how to spot metabolism changes that may be associated to an environment condition.

Data Analysis

Nine months old SP80-3280 hybrid sugar cane plants grown in the field (Experimental field Apta
de Jau), under irrigation (control) and area not irrigated (dry land, water stress treatment), had the +1
leaf samples collected from 5 plants (biological replicates). On the collection day, the soil water stress
treatment had a relative humidity of 50% field capacity.

The extraction was performed according to the method described in [41] with some modifications.
Control and water samples stress were extracted from 50 milligrams material macerated in liquid
nitrogen. After addition of 1 mL extraction buffer (99.875% methanol and 0.125% formic acid)
samples were vortexed for 10 seconds. The samples were then sonicated for 15 minutes at the
maximum frequency (40KHz) under 20°C and then centrifuged for 20 minutes, at 14000 rpm and
20°C. The supernatant was filtered through a 0.22 pm filter and transferred to a new tube.

After metabolite extraction, the samples were analyzed with UPLC ACQUITY QTof — Ultima
(Waters) system, in triplicate. For this analysis a reverse phase chromatography column (Acquity
UPLC BEH C18 1.7 ym 2,1 x 100 mm) was used. Two buffers were used: Buffer A (H20 + 0.1 %
formic acid) and buffer B (acetonitrile + 0.1 % formic acid). The elution gradient used was: 95 % A and
5% B (for 3 minutes), 75 % A and 25% B (for 3 minutes), 5% A and 95% B (for 3 minutes), and 95 %
A and 5% B (for 4 minutes) to column wash and reconditioning. The flow gradient employed was 0.5

ml/min.



The source used was electrospray ionization (ESI). The mass spectra were acquired in positive
mode, and mode V. The instrument was operated with capillary voltage of 3.0 kV and cone voltage of
35 KV. The temperatures of the source and desolvation were 150 °C and 450 °C. The desolvation gas
flow was 550 L/h and 50 L/h for nebulizer gas (nitrogen). The mass spectrum was acquired in the ratio
of mass/charge (m/z) range of 100-2000 Da

The peak picking, grouping and retention time correction were carried out as shown in the script

below.

# ProbMetab suggested application

# initial parameters from
http://www.nature.com/nprot/journal/v7/n3/fig_tab/nprot.2011.454 T1l.html
# load required packages

library(ProbMetab)

library(xcms)

library (CAMERA)

# Preprocessing
xset <- xcmsSet(".", method='centWave',6K ppm=15,

peakwidth=c(5,20), prefilter=c(0,0)

)

xset <- group(xset)
xset2 <- retcor(xset,method="obiwarp",profStep=0.1)
xset2 <- group(xset2, mzwid=0.015,minfrac=0.5,bw =2)
xset3 <- fillPeaks(xset2)

an <- annotate(xset, perfwhm=0.6, cor_eic_th=0.75,
mzabs = 0.01 , polarity="positive")

# load(“probmetab-case2-box00.RData”) # run to avoid to deal with raw data and go directly
to examples

# example of biocyc API alternative usage

# Chose an organism to download metabolites on its known metabolism
# ara is the organism code for Arabidopsis thaliana

vpth <- get.pathway.by.organism.biocyc("ara")

# optionally use parallel processing

library(doMC)

registerDoMC ()

# Retrieve all compounds associated to known Arabidopsis pathways

m <- foreach(i=1l:length(vpth)) %dopar% get.compounds.by.pathway.biocyc(vpth[i])
m2 <- do.call("rbind", m)

m3 <- unique(m2)

m4 <- m3[-grep("Error", m3[,3]),]

# Retrieve all single compound reactions for each compounds

rlist <- list()

rlist <- foreach(i=l:nrow(mé)) %dopar% get.reactions.by.compound.biocyc(mé4[i,1])

# before attaching the reactions, verify if all compounds have at least one reaction
which(unlist(lapply(rlist, length))==0)

m4 <- cbind(m4, unlist(rlist))

colnames(m4)[4] <- "reactions"

m4[,3] <- gsub("\\s", "", m4[,3])

m4[300:305, ]




id
"ARA:PHOSPHORIBULOSYL-FORMIMINO-AICAR-P"
"ARA:AICAR"
"ARA:D-ERYTHRO-IMIDAZOLE-GLYCEROL-P"
"ARA:IMIDAZOLE-ACETOL-P"
"ARA:L-HISTIDINOL-P"

"ARA:HISTIDINOL"

name formula
"phosphoribulosylformimino-AICAR-P" "C15H21N5015P2"
"aminoimidazole+carboxamide+ribonucleotide" "C9H13N408P1"
"D-erythro-imidazole-glycerol-phosphate" "C6HIN206P1"
"imidazole+acetol-phosphate" "C6H7N205P1"
"L-histidinol-phosphate" "C6H11N304P1"
"histidinol" "C6H12N301"
reactions

"ARA:GLUTAMIDOTRANS-RXN; ARA:PRIBFAICARPISOM-RXN"
"ARA:AICARTRANSFORM-RXN; ARA :GLUTAMIDOTRANS-RXN; ARA:AICARSYN-RXN"
"ARA:IMIDPHOSDEHYD-RXN; ARA :GLUTAMIDOTRANS-RXN"
"ARA:HISTAMINOTRANS-RXN; ARA: IMIDPHOSDEHYD-RXN"
"ARA:HISTIDPHOS-RXN; ARA:HISTAMINOTRANS-RXN"
"ARA:HISTOLDEHYD-RXN; ARA:RXN-8001; ARA:HISTIDPHOS-RXN"

# In a similar way we can retrieve information from KEGG
keggdb <- read.table("http://rest.kegg.jp/link/compound/reaction")
head(keggdb)
vl V2
rn:R00001 cpd:C00001
rn:R00001 cpd:C00404
rn:R00001 cpd:C02174
rn:R00002 cpd:C00001
rn:R00002 cpd:C00002
6 rn:R00002 cpd:C00008
dim(keggdb)
[1] 38711 2
get.name(keggdb[1,2])
[1] "H20"
get.formula.kegg(keggdb[1l,2])
[1] "H20"
get.name(keggdb[2,2])
[1] "Polyphosphate"
get.formula.kegg(keggdb[2,2])
[1] "H4P207 (HPO3)n"
# Optionally the user can extract all compound information in the standard format
# with the KEGG organism code
# http://www.kedq.jp/kegg/catalog/org_list.html
system.time(ath <- build.database.kegg("ath"))

U W N

# We provide a formated KEGG database loaded with the package
# to perform the downstream analysis

# Database matching

DB <- KEGGcpds

ionAnnot <- get.annot(an, allowMiss=TRUE, minint=1000)
reactionM <- create.reactionM(DB, molIon=ionAnnot, ppm.tol=30)
wl <-weightM(reactionM, useIso=FALSE)

w <- design.connection(reactionM)

# Probability calculations

X <- l:ncol(wl$wm)

y <- l:nrow(wl$wm)

conn <- gibbs.samp(x, y, 5000, w, wl$wm)

# Output representation
system.time(ansConn <- export.class.table(conn, reactionM, ionAnnot, I



http://www.kegg.jp/kegg/catalog/org_list.html

filename="AnalysisExample",
html=TRUE, m.test="t.test",
classl="F_I Nature", class2="F_S Nature",
DB=DB)
)

mw <- which(w==1,arr.ind=TRUE)
corList <- reac2cor(mw, ansConn$classTable, corths=0.7, corprob=0)

The analysis encompassed by ProbMetab package uses different sources of information to try to
potentiate the understanding of dynamic changes in the metabolism. The Figure 5 illustrates the partial
view of a correlation weighted network, which summarizes information from peak ranking, metabolic
pathway context and dynamic correlation changes, and allows the navigation and edition of the

network in Cytoscape.

With the aid of such context visualization was possible to observe that 31 of detected mass peaks
have between their possible identities retrieved from KEGG database, compounds that participate of
Flavonoid biossynteses, a well known secondary metabolism pathway in plants. The alteration on
Flavonoid levels is a known abiotic stress marker in plants, and was previously described to contain the
generation of Reactive Oxygen Species (ROS), constituting a secondary ROS scavenging system in

plants [42].

# creating and formatting a graph
# load(“probmetab-case2-box0l.RData”) # load the necessary objects to draw the graph

classTable <- ansConn$classTable
gr.cor <- ftM2graphNEL(corList$cor.vs.reac)

node.names <- apply(classTable[classTable[,6]!="",1:7], 1, function(x) paste(x[6], "-",
paste(strsplit(as.matrix(x[7]), "#")[[1]1][1l:2], collapse="\n"), sep=""))
node.names <- sub(""\\s+", "", node.names)

node.names <- node.names[as.numeric(nodes(gr.cor))]

# color edges that represent correlations between mass peaks higher than

# 0.7 of red

form <- edgeNames(gr.cor)

form <- data.frame(form, form %in%
apply(corList$signif.cor[corList$signif.cor[,1]1>0.70,2:3], 1, paste, collapse="~"))

# there is no negative correlation

form <- data.frame(form, form[,1l] %in% apply(corList$signif.cor[corList$signif.cor[,1l]<(-
0.70),2:3], 1, paste, collapse="~"))

cnames <- c("edge.name", "color.#FF0000", "color.#006400")

colnames(form) <- cnames

# color nodes representing differential representation of blue

pvec <- as.numeric(classTable[classTable[,5]!="",5])

form2 <- nodes(gr.cor)

form2 <- data.frame(form2, as.numeric(nodes(gr.cor)) %in% which(pvec<0.05))
cnames2 <- c("node.name", "lcolor.#FF0000")

colnames(form2) <- cnames2




# export the basic graph format do a quick web visualization
createJSONToCytoscape(gr=gr.cor, node.label=node.names)
openGraph("network. json", classTable=classTable, openBrowser=TRUE)

# format attribute tables to export to cytoscape visualization

cpdnames <- as.character(sapply(classTable[classTable[,2]!="unknown",2], function(x)
DBS$name[DB$id==as.character(x)]))

classTable <- as.matrix(classTable)

classTable[classTable[,2]!="unknown",2] <- cpdnames

cpdInfo <- create.pathway.node.attributes(ansConn$classTable, graph=gr.cor, DB=DB,
filenamel="pathl.noa", filename2="path2.noa", organismId="zma")

create.reaction.edge.attributes(classTable, graph=gr.cor, w=w, reactionM=reactionM, DB=DB,
filename="reac.eda")

# take care, there are not negative correlations, so the column 3 of form matrix is empty
export2cytoscape(gr.cor, node.label=node.names, cwName="test4", edge.form=form[,-3],
node.form=form2, cpdInfo=cpdInfo, classTable=classTable)

# show correlations that changed in two groups of repeated samples

# water
corListl <- reac2cor(mw, ansConn$classTable[,-c(25:39)], corths=0.7, corprob=0)

# drought

corList2 <- reac2cor(mw, ansConn$classTable[,-c(8:24)], corths=0.7, corprob=0)
gr.cor2 <- ftM2graphNEL(corList2$cor.vs.reac)

gr.corl <- ftM2graphNEL(corListlS$cor.vs.reac)

mwl <- t(sapply(edgeNames(gr.corl), function(x) strsplit(x, "~")[[111])
mw2 <- t(sapply(edgeNames(gr.cor2), function(x) strsplit(x, "~")[[1]])
mw3 <- unique(rbind(mwl, mw2))

gr.cor3 <- ftM2graphNEL(mw3)

)
)

inOne <- setdiff(edgeNames(gr.corl), edgeNames(gr.cor2))
inTwo <- setdiff(edgeNames(gr.cor2), edgeNames(gr.corl))

form <- edgeNames(gr.cor3)
form <- data.frame(form, form %in% inOne)
form <- data.frame(form, form[,1l] %in% inTwo)

# Format and Normalize data do calculate fold change
metabData <- classTable[classTable[,6]!="",]
metabData2 <- apply(metabData[,8:39], 2, as.numeric)
rownames (metabData2) <- metabDatal[,6]
normalize.medFC <- function(mat) {
# Perform median fold change normalisation
# X - data set [Variables & Samples]
medSam <- apply(mat, 1, median)
medSam[which(medSam==0)] <- 0.0001
mat <- apply(mat, 2, function(mat, medSam) {
medFDiSmpl <- mat/medSam
vec<-mat/median(medFDiSmpl)
return(vec)
}, medSam)
return (mat)

}

metabData2 <- normalize.medFC(metabData2)

# Calculate differential correlations

# The DiffCorr package can be found at: http://diffcorr.sourceforge.net/

source("../DiffCorr src/R/DiffCorr.R")

comp.2.cc.fdr(output.file="resM.txt", metabData2[,1:17], metabData2[,18:32], threshold=0.05)




res <- read.delim("resM.txt")

nres <- paste(res([,l], "~", res[,2], sep="")

form <- data.frame(form, form[,1l] %in% nres)

# red for only in water

# green for only in drought

# width for differential correlation

cnames <- c("edge.name", "color.#FF0000", "color.#006400", "width.5")
colnames(form) <- cnames

node.names <- apply(classTable[classTable[,6]!="",1:7], 1, function(x) paste(x[6], "-",
paste(strsplit(as.matrix(x[7]), "#")[[1]1][1l:2], collapse="\n"), sep=""))
node.names <- sub(""\\s+", "", node.names)

node.names <- node.names[as.numeric(nodes(gr.cor3))]

pvec <- as.numeric(classTable[classTable[,5]!="",5])

foldChange <- apply(metabData2, 1, function(x) mean(x[18:32])/mean(x[1:17]))
colnames(classTable)[5] <- "Fold Change"

classTable[classTable[,5]!="",5] <- foldChange

form2 <- nodes(gr.cor3)

form2 <- data.frame(form2, as.numeric(nodes(gr.cor3)) %in% which(pvec<0.05))
cnames2 <- c("node.name", "lcolor.#9400D3")

colnames(form2) <- cnames2

cpdInfo <- create.pathway.node.attributes(ansConn$classTable, graph=gr.cor3, DB=DB,
filenamel="pathlDiff.noa", filename2="path2Diff.noa", organismId="zma")
create.reaction.edge.attributes(classTable, graph=gr.cor3, w=w, reactionM=reactionM, DB=DB,
filename="reacDiff.eda")

export2cytoscape(gr.cor3, node.label=node.names, cwName="test4", edge.form=form,
node.form=form2, cpdInfo=cpdInfo, classTable=classTable)




Figure 5 — Partial view of the overlaid reaction and weighted correlation network (absolute
correlation value above 0.7). Nodes (in purple) represents mass peaks with mean intensity
significantly different between standard watering and drought. Edges in red represents the
correlations present only on standard watering condition, green only on drought condition and
blue in both conditions. The node width indicates the difference between correlations is
significant (thick) or not (thin).

Once one detects an interesting pathway, ProbMetab methods allow to export the visualization of
KEGG pathway layout, making possible the inspection of the metabolic context where the putative
compounds are inserted Figure 6, and with that a link with traditional pathway knowledge and
representation, in a an environment where the user can edit the pathways and store a standard format

that can later be used to modeling [43—45].

# see a specific pathway in a different window

classTableb <- ansConn$classTable

for(i in l:nrow(classTableb)) if(classTableb[i,6]=="") classTableb[i,6] <- classTableb[i-
1,6]

classTableb[,6] <- as.numeric(classTableb[,6])

classTableS <- classTableb[which(classTableb[,6] %in% nodes(gr.cor)), ]

kgr <- get.kgml.positions.kegg("rn00944")

cnames <- sapply(sub(""cpd:(C\\d{5}).*$", "\\1", colnames(kgr$adj)), get.name)
kgrl <- as(kgr$adj, "graphNEL")

form <- data.frame(nodes(kgrl))

codes <- sub(""cpd:(C\\d{5}).*$", "\\1", colnames(kgr$adj))

form <- cbind(form, codes%in% classTableS[,2])

cnames2 <- c("node.name", "lcolor.#FF0000")

colnames(form) <- cnames2

export2cytoscape(kgrl, node.label=cnames, cwName="test2", node.form=form, pos=kgr)

# retrieve kegg version with ProbMetab
get.kegg.pathways(as.vector(form[form[,2],1]), 20)
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Figure 6 — Representations of a KEGG pathway map retrieved with ProbMetab. A — Conventional
KEGG pathway map recovered through KEGG's API. B - Schematic representation of Flavone
and flavonol biosynthesis pathway, automatically exported from KEGG to Cytoscape by
ProbMetab, showing the 23 compounds that appear as putative identities in the overlaid
reaction/weighted network.

Among the 31 annotated peaks, 18 present mean intensity significantly different between the



watering and drought conditions, p-value for t-test adapted to multiple testing < 0.05 [46]. Again,
among the 31 peaks, 27 had an intensity decrease in drought conditions, Intensity ratio (intensity in
drought/intensity in watering) < 1. Previous studies have shown that small metabolite intensity
variations, from one to two times (Fold Change), are robust to experimental variation [47]. In the
present experiment we observed the variation of maximum 5 times more intense on watering (putative

mass 610.14) and maximum 1.3 times more intense on drought condition (putative mass 550.09).



Table — Partial view of probability tables exported by ProbMetab, showing in yellow the putative
identities associated to Flavonoid biosynthesis.

Proposed Mass Most Probable Compound Code

Most probable Compound

Probability Entropy Fold Change

lon annotation

t-test pvalue

Compound/Pathways

286.0439463083 C01514
C05903
C17786
C10510
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C10097
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C08720
C07359
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C16754
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C10193
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C10033
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C01714
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C10345
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C16911
C10420
C01715
C04609
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C10050
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C16803
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Procyanidin BS
Epicatechin-(4beta->8)-ent-epicatechin
Procyanidin B4

Vitexin 2"-O-beta-L-rhamnoside
Apigenin 7-O-neohesperidoside
Kaempferitrin

Glucofrangulin A

Violanthin

0.162
0.147
0.076
0.074
0.071

0.07
0.068
0.067
0.066
0.066
0.065
0.058
0.009
0.202

0.16
0.142

0.09
0.086
0.084
0.082
0.082
0.074
0.395
0.126
0.112
0.069
0.065
0.064
0.058
0.056
0.054
0.266
0.153

0.14

0.09
0.079
0.077
0.067
0.065
0.063
0.728
0.052
0.052
0.046

0.03
0.022
0.022
0.017
0.016
0.016
0.952

0.01
0.008
0.007
0.005
0.005
0.004
0.004
0.004
0.003

0.39
0.122
0.119

0.11
0.102

0.09
0.066
0.222
0.204
0.196
0.194
0.184
0.212

0.21
0.206
0.188
0.185

0.19
0.184
0.184
0.166
0.116
0.048
0.038
0.038
0.036

0.955

0.969

0.864

0.938

0.5

0.129

0.9

0.999

0.999

0.91

0.349

0.736

0.905

0.752

0.523

0.965

0.843

0.965

0.514

0.444

287.0512#315.1484{48][M]+ #{M+H-C6H1005]+ 448.093

3310754501 439 70| [M]+#

331.0734#381.24554{71][M]+#[M+Na]+ 308.088

331.0742#463. 179472 MI+HIM+K]+ 292.11

433.1084#419.1024[169][M+#[M+H-C2H4] + 460.13

433.1007#302.56 15#{170][M]+#{M+H]+ 432.094

465.0926#212.5315#[202][M]+#M+H]+ 464.088

565.1417#257.608#[299][M]+#[M+H]+ 564.137

565.1425#333.5285H#[300][M]+#[M+H]+ 564.136

579.1576/#401.938#[317)[M]+#

0.000017476

0.3015851606

0.7463242681

0.0424501254

0.0049787785

0.9982552761

0.16032

0.790713334

0.0022811227

0.0002145892

C01514-00941;00944;01100;01110
C05903-00941;00944;01100;01110;01061

C01265-00944

C01265-00944

C01265-00944

C04608-00944
C01714-00944
C01460-00941;00944

C16911-00944

C01460-00941;00944
C04608-00944
C01714-00944

C16911-00944

C05623-00944;01100;01110

C04858-00944

C04858-00944

C12628-00944
C12627-00944



Proposed Mass Most probable Compound Probability Entropy Fold Change lon annotation t-test pvalue Compound/Pathways
578.1541496289 C12628 Vitexin 2"-O-beta-L-rhamnoside 0.343 0.894 0.797 579.1614#298.094#{318][M]+#[M+H-C6H1005]+ 740.207  0.0804169189 C12628-00944
C12627 Apigenin 7-O-neohesperidoside 0.14 C12627-00944
C10196 Violanthin 0.109
C16802 Glucofrangulin A 0.1
C16981 Kaempferitrin 0.089
C17639 Procyanidin B2 0.066
C17640 Procyanidin B5 0.056
C10238 Procyanidin B4 0.049
C10221 Epicatechin-(4beta->8)-ent-epicatechin 0.048
592.1702418137 C12629 7-O-Methylvitexin 2"-O-beta-L-thamnoside 0.606 0.968 0.934 593.1775#371.957#{344][M]+#[M+H]+ 592.17 0.2482714845 C12629-00944
C04275 1,2-Bis-O-sinapoy!l-beta-D-glucoside 0.394
594.1441488456 C17140 Tribuloside 0.483 0.804 0.525 595.1514#260.428#{348][M]+#[M+H]+ 594.147 0.0002277469
4024 Vitexin 2"-O-beta-D-glucoside 0.074 C04024-00944
C04199 Isovitexin 2"-O-beta-D-glucoside 0.07 C04199-00944
C12630 Scolymoside 0.07 C12630-00944
C10195 Vicenin-2 0.064
C08064 Saponarin 0.063
C10513 Paniculatin 0.062
C17600 Multiflorin B 0.057
C03870 Isoorientin 2"-O-rhamnoside 0.056
594.1471744158 C17140 Tribuloside 0.144 0.996 0.441 595.1545#389.984#[349][M] +#[M+H]+ 594.148 0.0042995599
C12630 Scolymoside 0.118 C12630-00944
C04024 Vitexin 2"-O-beta-D-glucoside 0.116 C04024-00944
C10195 Vicenin-2 0.116
C08064 Saponarin 0.115
C04199 Isovitexin 2"-O-beta-D-glucoside 0.112 C04199-00944
C17600 Multiflorin B 0.098
03870 Isoorientin 2"-O-rhamnoside 0.094
C10513 Paniculatin 0.088
594.1495186907 C04199 Isovitexin 2'-O-beta-D-glucoside 0.138 0.992 1.176 595.1568#295.303#[350][M] +#[M+H]+ 594.15 0.0237175346 C04199-00944
C12630 Scolymoside 0.126 C12630-00944
C10513 Paniculatin 0.122
C17600 Multiflorin B 0.118
C10195 Vicenin-2 0.112
C08064 Saponarin 0.11
C04024 Vitexin 2"-O-beta-D-glucoside 0.106 C04024-00944
C03870 Isoorientin 2"-O-rhamnoside 0.106
C17140 Tribuloside 0.062
596.1276060961 C12637 Quercetin 3-O-[beta-D-xylosyl-(1->2)-beta-D-¢ 1 0 0.946 597.1349¢#233.0755#[352][M] +# 0.9050104025 C12637-00944
610.138698153 C10227 Gallocatechin-(4alpha->8)-epigallocatechin 0.588 0.742 0.655 611.146#211.4575#{371][M]+# 0.0341713173
C05625 Rutin 0.12 C05625-00944,01100;01110
C10102 Lucenin-2 0.078
C16490 Kaempferol 3-O-beta-D-glucosylgalactoside 0.076 C16490-00944
C12634 Kaempferol 3-O-beta-D-glucosyl-(1->2)-beta-l 0.07 C12634-00944
C17563 Multinoside A 0.068
610.1476196543 C05625 Rutin 0.283 0.916 0.199 611.1549#288.3965#[372][M]+#{M+H+HCOOH]+ 564.139  0.023264914 C05625-00944;01100;01110
C16490 Kaempferol 3-O-beta-D-glucosylgalactoside 0.188 C16490-00944
C12634 Kaempferol 3-O-beta-D-glucosyl-(1->2)-beta-l 0.18 C12634-00944
C17563 Multinoside A 0.169
C10102 Lucenin-2 0.165
C10227 Gallocatechin-(4alpha->8)-epigallocatechin 0.015
550.0947069651 C12638 Quercetin 3-O-(6-O-malonyl-beta-D-glucoside 1 0 1.344 589.0586#35.237##M+K]+ 550.095 0.0001756326 C12638-00944
432.0958380163 C06569 7a-Hydroxy-O-carbamoyl-deacetylcephalospc 0.716 0.514 0.707 433.0992#402.251#{171][M]+#[M+H]+ 432.096 0.0330061661
C04608 Apigenin 7-O-beta-D-glucoside 0.06 C04608-00944
C01714 Apigenin-6-C-glucoside 0.057 C01714-00944
C01460 Vitexin 0.044 C01460-00941;00944
C09126 Genistein 7-O-beta-D-glucoside 0.031
C04609 Aerobacter aerogenes capsular polysacchari 0.024
C16911 Afzelin 0.019 C16911-00944
C10345 Emodin 8-glucoside 0.016
C10420 Genistein 8-C-glucoside 0.016
C01715 Kallikrein 0.016
432.0942072809 C06569 7a-Hydroxy-O-carbamoyl-deacetylcephalospc 0.897 0.236 0.965 433.1007#302.5615#[170][M]+#[M+H]+ 432.094 0.9982552761
C01714 Apigenin-6-C-glucoside 0.022 C01714-00944
C01460 Vitexin 0.019 C01460-00941;00944
C04608 Apigenin 7-O-beta-D-glucoside 0.018 C04608-00944
C09126 Genistein 7-O-beta-D-glucoside 0.01 C09126-00943
C10345 Emodin 8-glucoside 0.008
C01715 Kallikrein 0.008
C10420 Genistein 8-C-glucoside 0.007
C16911 Afzelin 0.006 C16911-00944
C04609 Aerobacter aerogenes capsular polysaccharit 0.005
330.0667697971 C17405 Penicillin O 0.274 0.928 0.708 353.0578#259.571#(86][M]+#M+Na]+ 330.067 0.0092964071
C01265 3,4',5-Trihydroxy-3, 7-dimethoxyflavone 0.162 C01265-00944
C10193 Tricin 0.15
C10033 Cirsiliol 0.075
C03040 (-)-Bisdechlorogeodin 0.072
C10424 Hildecarpin 0.07
C16754 Aflatoxin G2 0.068
C17670 Aurantio-obtusin 0.064
C03036 (+)-Bisdechlorogeodin 0.064
594.1477667169 C04024 Vitexin 2"-O-beta-D-glucoside 0.122 0.999 0.441 595.1545#389.984#{349][M]+#[M+H]+ 594.148 0.0042995599 C04024-00944
C12630 Scolymoside 0.122 C12630-00944
C04199 Isovitexin 2"-O-beta-D-glucoside 0.118 C04199-00944
C10513 Paniculatin 0.114
C17140 Tribuloside 0.112
C03870 Isoorientin 2"-O-rhamnoside 0.108
C08064 Saponarin 0.104
C17600 Multiflorin B 0.104
C10195 Vicenin-2 0.095
594.1497401947 C12630 Scolymoside 0.14 0.984 1.176 595.1568#295.303#{350][M]+#[M+H]+ 594.15 0.0237175346 C12630-00944
C04199 Isovitexin 2"-O-beta-D-glucoside 0.127 C04199-00944
C04024 Vitexin 2"-O-beta-D-glucoside 0.12 C04024-00944
C10195 Vicenin-2 0.12
C17600 Multiflorin B 0.118
C08064 Saponarin 0.115
C10513 Paniculatin 0.114
C03870 Isoorientin 2"-O-rhamnoside 0.107
C17140 Tribuloside 0.04



Proposed Mass Most p! C Entropy Fold Change lon annotation t-test pvalue Compound/Pathways

594.1471916604 C17140 Tribuloside 0.143 0.996 0.525 595.1514#260.428#[348][M]+#[M+H]+ 594.147 0.0002277469
C12630 Scolymoside 0.122 C12630-00944
C04199 Isovitexin 2"-O-beta-D-glucoside 0.116 C04199-00944
C08064 Saponarin 0.114
C04024 Vitexin 2"-O-beta-D-glucoside 0.11 C04024-00944
C17600 Multiflorin B 0.106
C10513 Paniculatin 0.102
C10195 Vicenin-2 0.094
C03870 Isoorientin 2"-O-rhamnoside 0.094

610.1451587718 C05625 Rutin 0.265 0.956 0.887 633.1316#211.4535#]394][M]+#[M+Na]+ 610.145 0.4343258201 C05625-00944,01100;01110
C12634 Kaempferol 3-O-beta-D-glucosyl-(1->2)-beta-l 0.19 C12634-00944
C16490 Kaempferol 3-O-beta-D-glucosylgalactoside 0.18 C16490-00944
C10102 Lucenin-2 0.162
C17563 Multinoside A 0.15
C10227 Gallocatechin-(4alpha->8)-epigallocatechin 0.054

564.136319278 C10181 Schaftoside 0.212 0.999 0.514 565.1425#333.5285#{300] [M]+#[M+H]+ 564.136 0.0022811227

C16491 Isovitexin 2"-O-arabinoside 0.204
C16803 Glucofrangulin B 0.202
C04858 Apigenin 7-O-[beta-D-apiosyl-(1->2)-beta-D-g| 0.196 C04858-00944
C10110 Neoschaftoside 0.187

564.1366987421 C16491 Isovitexin 2"-O-arabinoside 0.215 0.999 0.965 565.1417#257.608#[299][M]+#[M+H]+ 564.137 0.790713334
C04858 Apigenin 7-O-[beta-D-apiosyl-(1->2)-beta-D-gl 0.209 C04858-00944
C10110 Neoschaftoside 0.202
C10181 Schaftoside 0.193
C16803 Glucofrangulin B 0.18

448.0933731465 C01821 Isoorientin 0.23 0.954 0.473 449.0995#315. 135##M+H]+ 448.093 7.24857998668504E-005
C03951 Luteolin 7-O-beta-D-glucoside 0.146 C03951-00944
C12626 Kaempferol 3-O-beta-D-galactoside 0.104 C12626-00944
C12249 Astragalin 0.1 C12249-00944,01110
C16409 Aureusidin 6-O-glucoside 0.086
C01750 Quercitrin 0.076 C01750-00944
C08598 Carthamone 0.073
C10042 Fisetin 8-C-glucoside 0.071
C10114 Orientin 0.063
C17056 Plantaginin 0.05

464.0877596974 C05623 Quercetin 3-O-glucoside 0.408 0.842 0.843 465.0926#212.5315#[202] [M]+#[M+H]+ 464.088 0.1603182746 C05623-00944,01100;01110
C12639 Quercimeritrin 0.128
C10108 Myricitrin 0.121
C10050 Gossypetin 8-rhamnoside 0.118
C16410 Bracteatin 6-O-glucoside 0.115 C16410-00941
C10073 Hyperin 0.108
C06775 11-O-Demethylpradinone | 0.002

592.1698116346 C12629 7-O-Methylvitexin 2"-O-beta-L-thamnoside 0.608 0.966 1.212 615.1584#371.923#[374] [M]+#[M+Na]+ 592.17 0.078735621 C12629-00944
C04275 1,2-Bis-O-sinapoy|-beta-D-glucoside 0.392

.
Conclusions

New experiments are being carried out to obtain MS/MS spectras from putative Flavonoid peaks in
order to confirm the annotated identities. Although many studies have shown at the transcriptional
level, that the Flavonoid production is increased in response to drought [42], Yang et al. (2007) [43]
have shown for Glycyrrhiza inflata, that, even though the production increase, the total content
Flavonoid decrease. A possible explanation for this decrease, also observed in the present experiment,

could be the change of Flavonoid observable form due its scavenging role in the drought condition.

The differential correlation analysis [49] can provide evidences of carbon flux changes under
drought stress, once a correlation between two mass peaks present on normal condition and absent
under stress can point to a new reaction happening. The understanding of carbon partition under stress
conditions is essential to provide increments of cultivated plants. Hofmann & Jahufer, (2011) [50],
have shown a negative correlation between Flavonoid production and drought mass accumulation in
white clover genotypes, and suggest that Flavonoids can be used as biomarkers in breeding programs to

control the tradeoff between production and stress tolerance.

The analysis automated in ProbMetab were able to recover changes in a known plant stress
response metabolic pathway, showing its potential to unravel interesting mechanistic changes in the

metabolism. Only a small fraction of the reaction network was analyzed, and the powerful bridge



between R and Cytoscape, with the condensed information provided by ProbMetab, allows to further

explore the metabolic changes under stress conditions.
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