

# **Combining P values to improve classification of differential gene expression in the HTself software**

D.A. Cortez<sup>1</sup>, A.P. Tonon<sup>2</sup>, P. Colepicolo<sup>2</sup> and R.Z.N. Vêncio<sup>3</sup>

<sup>1</sup>Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brasil <sup>2</sup>Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil <sup>3</sup>LabPIB, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil

Corresponding author: R.Z.N. Vêncio E-mail: rvencio@usp.br

Genet. Mol. Res. 10 (4): 3586-3595 (2011) Received March 18, 2011 Accepted July 13, 2011 Published December 5, 2011 DOI http://dx.doi.org/10.4238/2011.December.5.5

**ABSTRACT.** HTself is a web-based bioinformatics tool designed to deal with the classification of differential gene expression in low replication microarray studies. It is based on a statistical test that uses self-self experiments to derive intensity-dependent cutoffs. We developed an extension of HTself, originally released in 2005, by calculating P values instead of using a fixed acceptance level  $\alpha$ . As before, the statistic used to compute single-spot P values is obtained from the Gaussian kernel density estimator method applied to self-self data. Different spots corresponding to the same biological gene (replicas) give rise to a set of independent P values that can be combined by well-known statistical methods. The combined P value can be used to decide whether a gene can be considered differentially expressed or not. HTself2 is a new

version of HTself that uses P values combination. It is implemented as a user-friendly desktop application to help laboratories without a bioinformatics infrastructure.

**Key words:** Microarray; Differential gene expression; Statistical test; Combined P value

## INTRODUCTION

The study of gene differential expression in microarray studies plays a central role in bioinformatics today (Ramdayal, 2010; Sara et al., 2010). Several methods have been developed using a variety of statistical techniques (Farcomeni, 2008; Bremer et al., 2010). One of these methods is HTself (Vêncio and Koide, 2005), which was designed to deal with analysis of differentially expressed genes in low-replication contexts. This means that the ideal setup where one has as many biological and technical replicates as possible can not be fulfilled, either due to financial restrictions or due to shortage of available RNA. This is an important context for many real-life problems (Dougherty, 2001; Stevens et al, 2010).

HTself uses self-self hybridizations to derive intensity-dependent cutoffs to classify a gene as differentially expressed. Self-self experiments are commonly used in microarray analysis (Wenger et al., 2010; NCBI, 2009) and can be easily performed by labeling the same biological material with either Cy3 or Cy5 dyes and hybridizing them simultaneously on the same microarray slide. Intensity-dependent cutoffs can be represented as curves in the *A-M* diagram, where  $A = \log_2 (cy3) / 2 + \log_2 (cy5) / 2$  and  $M = \log_2 (R)$  are the usual microarray analysis variables (Yang et al., 2005). The symbols cy3 and cy5 represent the fluorescence intensities and *R* the suitably normalized intensities ratio. Therefore, *A* gives the total spot intensity and *M* the spot intensities log ratio.

Intensity-dependent cutoffs obtained from self-self data are important because they serve as a test for classifying genes of non-self-self experiments by assuming that the same random process that generated the experimental noise in the first is also acting on the last. This is the essence of what will be presented here.

Construction of cutoffs can be statistically translated to the testing of the following null hypothesis.

## H<sub>a</sub>: the spot has no differential hybridization between the two probed samples.

In HTself, cutoffs are derived empirically by using self-self experiments to derive the null probability density function (pdf) of the test. The intensity-dependent feature follows by estimating the null pdf in a sliding-window, which slides over the range of spot intensities. The estimation is obtained by applying the Gaussian kernel density estimator (Duong, 2007). Cutoff values are computed within a sliding-window by integrating the estimated pdf around the mode until a user-defined probability  $\alpha$  is reached ( $\alpha$ -credibility interval). The process is repeated until the window has slid over all the *A* range. Finally, non-self-self data (measured within the same technical conditions of self-self ones) can be tested against the cutoffs to decide whether they represent differentially expressed genes or not: the hypothesis test is applied to all spots and if one has a number of replicated measures for a given gene, it is evaluated if

Genetics and Molecular Research 10 (4): 3586-3595 (2011)

#### D.A. Cortez et al.

their average is above or below the intensity-dependent cutoff and classify the gene as differentially expressed. The full algorithm is described in Vêncio and Koide, 2005.

In this paper, we modify the above scheme in order to improve the classification criterion. Instead of working with a fixed  $\alpha$ -credibility interval, we compute P values to all spots. The evaluation of single P values is based on the statistics obtained in the same manner as HTself. One estimates the null pdf using self-self data with the sliding-window process and the Gaussian Kernel Density Estimator method. For those spots corresponding to the same biological gene (replicas), we apply a combination method to generate a unique P value for that gene. At the end, one obtains a set of gene specific P values that can be sorted and used by the researcher to classify genes as differentially expressed according to one's biological intuition and the level of evidence presented.

The idea of working with P value is an old one in statistical hypothesis testing and is used in a wide range of applications (Goodman, 2001). It is therefore natural to follow such a concept to its conclusion and test it as treated here. The novelty in our context is that several independent P values can be obtained for the same gene in a single microarray experiment. The question that arises is whether the evidence contained within it can be combined to support a particular statistical hypothesis, or equivalently, can we combine P values into a single test based on a common hypothesis? Fortunately there are several methods available to produce this type of combination (Fisher, 1932) and we apply two of them to the context here. Combining P values improves the usual HTself classification method in the sense that not only consistency is taken into account, but also the strength of the evidence, giving a more reliable tool to the researcher to be used for their studies.

This paper is organized as follows: section 2 gives the details on the calculation of a single spot P value based on the same statistics used in the usual HTself. Section 3 describes two statistical methods used to combine several P value for a single gene into a unique P value. It also gives an alternate procedure to produce a fast computation for experiments with large data involved, which can result in long processing time due to the huge number of calculations required. Section 4 shows the actual implementation of the ideas described here into a complete desktop application written especially to help laboratories without a bioinformatics infrastructure. A sample analysis is presented based on real data obtained for an experiment in the context of macroalga biology. Finally, section 5 sums up with some concluding remarks.

#### **Single-spot P value**

In statistical hypothesis testing, the P value is the probability of obtaining a value of the test statistic at least as extreme as the one that was actually observed, given that a null hypothesis is true. We apply this definition in what follows.

We start with two sets of data: one is the set of total intensities and log ratios  $S = \{(a^s, m^s)\}$  for the self-self experiment and the other is the corresponding  $N = \{(a^n, m^n)\}$  for the non-self-self experiment. Let  $T_a$  be the spot from a non-self-self experiment for which we want to evaluate its P value. Spot  $T_a$  is associated with a measure  $(a_a, m_a)$  in the set N.

Since for self-self experiments, by construction, the null hypothesis  $H_0$  (as stated in the Introduction) is true, we can construct the test statistic by collecting all self-self data in S that falls in a window of predefined length w centered at  $A_0$ . Call this set  $D_0$ . More precisely,  $D_0 = \{(a^s, m^s) \in S | a_0 - w < a^s < a_0 + w\}$ . We then apply the Gaussian Kernel Density Estimator

Genetics and Molecular Research 10 (4): 3586-3595 (2011)

(Duong, 2007) to the set  $D_0$  to obtain the null pdf locally:

$$\widehat{f}_{h}(m) = \frac{(2\pi)^{-\frac{1}{2}}}{h|D_{0}|} \sum_{m^{s} \in D_{0}} \exp\left[-\frac{1}{2}\left(\frac{m^{s}-m}{h}\right)^{2}\right]$$
(Equation 1)

where  $|D_0|$  stands for the number of elements in  $D_0$ , the "hat" over f indicates an estimator and h is the bandwidth.

Now define two one-tail P values associated with the spot  $T_0$ :  $\hat{\alpha}_0^{\uparrow}$  and  $\hat{\alpha}_0^{\downarrow}$ . From the above estimation for the test statistic, we have

$$\widehat{\alpha}_0^{\uparrow} = \int_{m_0}^{+\infty} \widehat{f}_h(x) dx = \frac{1}{|D_0|} \sum_{m^s \in D_0} \Phi\left(\frac{m^s - m_0}{h}\right)$$
(Equation 2)

and

$$\widehat{\alpha}_{0}^{\downarrow} = \int_{-\infty}^{m_{0}} \widehat{f}_{h}(x) dx = 1 - \widehat{\alpha}_{0}^{\uparrow}$$
 (Equation 3)

where  $\Phi$  is the cumulative Standard Normal.

The interpretation of  $\hat{\alpha}_0^{\uparrow}$  is that it gives the evidence level for the gene in spot  $T_0$  to be up-regulated, while  $\hat{\alpha}_0^{\downarrow}$  gives the evidence level for it to be down-regulated. Figure 1 shows a depicted version of the algorithm and serves as a summary.

The next step is to iterate the above procedure to all spots in the non-self-self experiment. Of course different spots corresponding to the same biological gene have a set  $\{(\hat{\alpha}_0^{\uparrow}, \hat{\alpha}_0^{\downarrow})\}$  of independent P values which have to be analyzed to produce a single test. This will be discussed in the next section.

### **Combining P values**

The general setup is that of combining  $k \ge 2$  independent tests. The combined null hypothesis,  $H_0$ , is that each of the component null hypothesis,  $H_{01}, \ldots, H_{0k}$ , is true (all of them). The combined alternative,  $H_A$ , is that at least one of the alternatives,  $H_{A1}, \ldots, H_{Ak}$ , is true. This scenario is appropriate to our modeling needs: if  $k \ge 2$  spots corresponding to the same biological gene g are tested, then combined null hypothesis is

 $H_0$ : each of the k spots corresponding to gene g has no differential hybridization between the two probed samples.

Rejection of  $H_0$  will lead to the conclusion that g is indeed differentially expressed. Many methods have been proposed for combining P values into a single test of a common hypothesis. A good empirical comparison between some of the most common ones can be found in (Loughin, 2004).

We have chosen two well know combination strategies - the chi-square (Fisher, 1932) and the normal (Lipták, 1958) - that have a good reputation and are easy to implement. Both chi-square and normal tests are of the quantile combination type, which relies on the fact that

Genetics and Molecular Research 10 (4): 3586-3595 (2011)

under the null hypothesis a P value from an absolutely continuous test statistic has a uniform distribution from zero to one. Given a P value  $p_i$ , i = 1, ..., k, available for each test, one selects some parametric cumulative density function (CDF), F, and transforms the P values into distributional quantiles according to  $q_i = F^{-1}(p_i)$ . The combining function is then  $C = \Sigma q_i$ , and the P value of the combined test is computed from the sampling distributions of C.



**Figure 1.** Algorithm to evaluate the P value of a single spot  $T_0$ . Top plot shows normalized data for the non-self-self experiment where we have selected a particular spot  $T_0$ . Middle plot shows normalized data collected from the self-self experiment to evaluate the kernel density estimator (the set  $D_0$  of  $\hat{f}_h$  in (1)). Bottom plot shows the null pdf obtained for the test and the corresponding P values  $\hat{\alpha}_0^{\uparrow}$  and  $\hat{\alpha}_0^{\downarrow}$ .

Genetics and Molecular Research 10 (4): 3586-3595 (2011)

<sup>©</sup>FUNPEC-RP www.funpecrp.com.br

The chi-square method uses a chi-square (2 df) to build its CDF. In this case, the sampling distribution of *C* turns out to be a chi-square (2*k* df),  $\chi^2_{2k}$ . The CDF used by the normal method is based on a normal scale. The resulting sampling distribution of *C* is given by a Standard Normal,  $\varphi$ . Therefore, implementation of both chi-square and normal methods depends only on the evaluation of integrals of  $\chi^2_{2k}$  and  $\varphi$ .

Application of the above ideas to the P values of a single gene is straightforward. Given  $\hat{\alpha}_i$  (up or down),  $1 \le i \le k$ , obtained according to section 2, the combined P value,  $\hat{\alpha}$ , is given by

• Chi-square method:

$$\widehat{\alpha} = \int_{F_0}^{\infty} \chi_{2k}^2(x) \, dx \,, \text{ where } F_0 = -2 \sum_{i=1}^n \log \widehat{\alpha}_i \qquad \text{(Equation 4)}$$

• Normal method:

$$\widehat{\alpha} = \int_{Z_0}^{\infty} \varphi(x) \, dx \,, \text{ where } Z_0 = \sum_{i=1}^{k} \frac{\Phi^{-1}(\widehat{\alpha}_i)}{\sqrt{k}} \tag{Equation 5}$$

Biological evidence would, ideally, indicate which of these alternatives is better suited to the problem at hand. According to (Loughin, 2004), the chi-square does best when the evidence is at least moderately strong and is concentrated in a small fraction of the individual tests. This is reasonable if one, for technical or biological reasons, believes that differential gene expression actually occurs in the case where a few of the tested spots indicates differentiation with relative strength. On the other hand, also according to Loughin (Loughin, 2004), the normal combining method does well in problems where evidence against the combined null is spread among more than a small fraction of the individual tests, or when the total evidence is weak. Therefore, one would rely on this method if one believes that gene expression can be identified through consistency of observations.

## Speeding up calculation time

The evaluation of all individual P values according to Equations 2 and 3 requires a great deal of computational effort due to the huge number of spots considered in a typical microarray experiment.

Although feasible in a reasonable amount of time, it is not entirely necessary to obtain all the values if we use the following heuristic: using the standard HTself method with a low credibility level, we may consider that the P values of those spots that fall under the pre-computed cutoffs are uniform from  $(1 - \alpha) / 2$  to one. This is a consequence of the observation that under the null hypothesis a P value from an absolutely continuous test statistic has a uniform distribution from zero to one. The heuristic then follows from the facts that spots bellow the cutoffs constructed using such small values of  $\alpha$  are almost sure to agree with the null hypothesis and that their P values are bounded from bellow by  $\approx (1 - \alpha) / 2$ .

We can, therefore, speed up calculation time if we adopt the following procedure:

1. Apply the standard HTself method with a low credibility level, say  $\alpha = 0.6$ .

Genetics and Molecular Research 10 (4): 3586-3595 (2011)

#### D.A. Cortez et al.

- 2. Select all spots that fall bellow the pre-computed cutoffs in 1.
- 3. Sort a random number in the interval  $[a_0, 1]$ , where  $a_0 = (1 \alpha) / 2$ , for each spot selected in 2.
- 4. Assign the number sorted in 3 as the P value of the corresponding spot.

Of course the above steps give only an approximation for the actual P value. Nevertheless, since it is performed only for those spots with relatively low strength against  $H_0$ , the overall result when combining P values should not be affected by such approximation.

## Application

We have implemented the ideas of HTself2 in a new microarray data analyzer software, called MaDA.

The software can be freely downloaded at http://labpib.fmrp.usp.br/MaDA. It was designed as a desktop application and written in Visual Basic 6.0, therefore running under MS Windows<sup>®</sup> operational system. It aims to give a single tool for the researcher without bioinformatics background, guiding him in the process of analyzing microarray data (in the same spirit of (Koide et al., 2006). The novelty is that it implements both the usual HTself as well as HTself2. Moreover, it is a stand alone application, so it is not necessary to have the R package installed (The R Foundation for Statistical Computing, 2006), which is well suit for laboratories with no informatics infrastructure. Figure 2 shows a picture of the main window of MaDA running a sample analysis (see next section).



Figure 2. Screenshot of MaDA main window. You may see the graphical visualization of one array of the experiment being analyzed and computed data for the selected spot in the array.

Genetics and Molecular Research 10 (4): 3586-3595 (2011)

The software includes, among others, the following features:

- Lets you define the number of rows and columns, as well as the number of arrays, of your experiment.
- The "configuration menu" lets you setup all parameters to be used in the analysis of your data (credibility level, LOWESS smoothing, etc) as well as to select only those spots that should be taken into account.
- Lets you open text files containing fluorescence data (background removed) arranged in any kind of format, for both self-self and non-self-self experiments.
- Lets you load a "chip map" (a formatted text file) containing the identification between spots and corresponding biological genes.
- There is a graphical visualization of your data in the arrays, with an user-friendly interface that quickly allows you to inspect computed values of the spots (*A*, normalized *M*, cutoffs, P values, etc.).
- Lets you perform data normalization using the LOWESS method (Yang, et al., 2005).
- Lets you construct HTself cutoffs and HTSelf2 combined P values.
- Gives you a complete classification list with all computed values of interest and standard errors for all genes.
- Simple integration with MS Excel<sup>®</sup>, which enables data to be worked in spreadsheets and plots to be easily constructed.

## Sample analysis

MaDA has been successfully used to analyze data extracted from samples of an economically important red marine macroalgae (*Gracilaria tenuistipitata*) (Tonon and Colepicolo, 2011). The microarray was constructed using a cDNA library of the algae obtained from normal culture conditions. A stress condition was simulated by adding metal pollutants to the culture media and global gene expression was studied by hybridization of samples based on the two opposite conditions (control and metal exposed).

Figure 2 shows MaDA running with data originating from the *Gracilaria* experiment. Self-self (control condition against control condition) and non-self-self (control condition against metal exposed condition) fluorescence intensities were loaded into the program, which was previously setup with the arrays dimensions, analysis parameters and genes localization (chip map). Normalization and HTself Cutoffs were computed, generating a complete classification of the genes (see Figure 3). Finally, implementing the ideas of this paper, combined P values were evaluated using both chi-square and normal methods. As one can see from Figure 4, results are shown in a sorted order to let the user choose the most likely genes to be differentially expressed. All results can be saved exported to a MS Excel<sup>®</sup> spreadsheet, where plots can be easily constructed.

# **CONCLUSIONS**

We have given an alternate (and improved) method to classify differential expression genes in microarray experiments using combination of P values. This extends the ideas of HTself in the sense that we do not have to work with a fixed credibility level,  $\alpha$ . Working with P values, as usual, enables the researcher to freely decide against or in favor of the alternative

Genetics and Molecular Research 10 (4): 3586-3595 (2011)

D.A. Cortez et al.

| ssification by Gene Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                |                                  |                                                  |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|----------------------------------|--------------------------------------------------|---------------------------------------------------------------|---------|---------------------------------------------|-------------------|-----------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------|---------|-----|----------|-------|
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total                                                                                       | Used           | +Inf                             | Inf                                              | M.Med                                                         | M.Mean  | Sigma                                       | Batio             | Sigma                                                           | Up                                                           | Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inside                                                                | P.Up                   | P.D     | awn | P.Inside |       |
| omal protein S21-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01962.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                           | 4              | 0                                | 0                                                | -0.9932                                                       | -1.0119 | 0.3523                                      | 0.507             | 0.1215                                                          | 0                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                     |                        | 0       | 1   | (        |       |
| hotosystem II owaen-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | evolving co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                           | 0              | 0                                | 0                                                |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          | Ш     |
| xoenzymes regulatory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | protein-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                           | 0              | 0                                | 0                                                |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          | E     |
| tarch associated prote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ain-301045.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 4                                                                                         | 0              | 0                                | 0                                                |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          |       |
| vpothetical protein-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1016.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                           | 0              | 0                                | 0                                                |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          | Ŀ     |
| erine/threanine protei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n phosphat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                           | 0              | 0                                | 0                                                |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          |       |
| nenaguinone biosynth-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | esis protein-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                           | 0              | 0                                | 0                                                |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          |       |
| hosphoglycerate kina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | se-200181.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                           | 0              | 0                                | 0                                                |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          | Ш     |
| vpothetical protein-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1033.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                           | 0              | 0                                | 0                                                |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          |       |
| vpothetical protein-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0299.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                          | 3              | 0                                | 0                                                | 0.2781                                                        | 0.1562  | 0.2383                                      | 1.1242            | 0.1763                                                          | 0                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                     |                        | 0       | 0   | 1        |       |
| ctip-301507.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                           | 4              | 0                                | 0                                                | 0.1348                                                        | 0.1725  | 0.3432                                      | 1 1513            | 0.2746                                                          | Π                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                     |                        | 0       | Π   | 1        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                |                                  |                                                  |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                |                                  |                                                  |                                                               |         |                                             |                   |                                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                        |         |     |          |       |
| ub Row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | Side           | F                                | lead                                             |                                                               |         |                                             | A                 | M.                                                              | Norm                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | osition                                                               |                        |         |     |          |       |
| ub Row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Col<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                           | Side           | 1 G                              | lead<br>T0103                                    | DE 02.8                                                       |         |                                             | A                 | M.                                                              | Norm<br>-0.3                                                 | F<br>7364 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | osition<br>Down                                                       | _                      |         |     |          |       |
| iub Row<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Col<br>6<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                           | Side           | F<br>1 C<br>1 C                  | lead<br>T0103<br>T0103                           | DE 02.8<br>DE 02.8                                            |         |                                             | A                 | M.<br>4.3212<br>4.7118                                          | Norm<br>-0.7<br>-0.6                                         | F<br>7364 C<br>848 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Positian<br>Down<br>Down                                              | -                      |         |     |          |       |
| 4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Col<br>6<br>12<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                           | Side           | F<br>1 G<br>1 G<br>2 G           | lead<br>(T0103)<br>(T0103)<br>(T0103)            | DE 02.8<br>DE 02.8<br>DE 02.8                                 |         |                                             | A                 | M.<br>4.3212<br>4.7118<br>4.0454                                | Norm<br>-0.7<br>-0.6                                         | 7364 D<br>5848 D<br>1.25 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | osition<br>Oown<br>Oown<br>Oown                                       |                        |         |     |          |       |
| Sub Row<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Col<br>6<br>12<br>6<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9<br>9<br>9<br>9                                                                            | Side           | F<br>1 0<br>2 0<br>2 0           | ead<br>T0103<br>T0103<br>T0103<br>T0103          | DE 0.2. B<br>DE 0.2. B<br>DE 0.2. B<br>DE 0.2. B<br>DE 0.2. B |         |                                             | A .               | M.<br>4.3212<br>4.7118<br>4.0454<br>4.3867                      | Norm<br>-0.3<br>-0.6<br>-<br>-1.3                            | 7364 D<br>8848 D<br>1.25 D<br>3763 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | osition<br>Jown<br>Jown<br>Jown<br>Jown                               |                        |         |     |          |       |
| Sub Row<br>4<br>4<br>4<br>ame of the gene: 303<br>of Differentially Expres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Col<br>6<br>12<br>6<br>12<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9<br>9<br>9<br>protein 9                                                                    | Side<br>21-301 | F<br>1 6<br>2 6<br>2 6<br>962.55 | ead<br>T0103<br>T0103<br>T0103<br>T0103          | DE D2.B<br>DE D2.B<br>DE D2.B<br>DE D2.B<br>DE D2.B           |         |                                             | A                 | M.<br>4.3212<br>4.7118<br>4.0454<br>4.3867<br>Parame            | Norm<br>-0.1<br>-0.6<br>-<br>-1.5<br>ters for C              | F<br>7364 E<br>5848 E<br>1.25 E<br>9763 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Position<br>Down<br>Down<br>Down<br>Down                              | 3                      |         |     |          |       |
| Nub Row   4 4   4 4   4 4   5 of Differentially Expression   10 Inferentially Expression 50 oncerved hypothetical oncerved hypothetical oncerved hypothetical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Col<br>6<br>12<br>6<br>12<br>5 ribosomal<br>seed Genes<br>21 301952<br>I protein 300<br>I protein 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 21-301         | 962.55                           | ead<br>T0103<br>T0103<br>T0103<br>T0103<br>T0103 | DE 02. B<br>DE 02. B<br>DE 02. B<br>DE 02. B                  |         | Total D<br>20<br>Total G                    | A<br>if:<br>enes: | H.<br>4.3212<br>4.7118<br>4.0454<br>4.3867<br>Parame<br>Use ≎   | Norm<br>-0.7<br>-0.6<br>-<br>-1.5<br>ters for C<br>cots with | F<br>7364 E<br>13848 E<br>1.25 E<br>9763 E<br>13763 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Positian<br>Down<br>Down<br>Down<br>Down                              | s                      | an: 2.0 |     | Ret      | suild |
| Sub Row<br>4<br>4<br>4<br>4<br>5<br>6 of Differentially Expres<br>5 of Differentially Expres<br>5 of International proteins<br>5 octome-300239 80<br>5 octome-300239 80<br>5 octome-300239 80<br>5 octome-300239 80<br>5 octome-300239 80<br>5 octome-100059 80<br>5 octome | Eol<br>6<br>12<br>6<br>12<br>12<br>5 ribosomal<br>ssed Genes<br>21-301952<br>1 protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>protein-301<br>pr | 9<br>9<br>9<br>9<br>55<br>55<br>666.113                                                     | 21-301         | F<br>1 G<br>2 G<br>2 G<br>962.55 | ead<br>T0103<br>T0103<br>T0103<br>T0103          | DE 02. B<br>DE 02. B<br>DE 02. B<br>DE 02. B                  |         | Total D<br>20<br>Total G<br>1449<br>Percent | if:<br>enes:      | 4.3212<br>4.7118<br>4.0454<br>4.3867<br>Parame<br>Use ≈<br>P.Up | Norm<br>-0.2<br>-1.3<br>ters for C<br>cots with<br>+ P.D own | F<br>7364 E<br>1848 E<br>1.25 E | Position<br>Down<br>Down<br>Down<br>Down<br>Down<br>Down<br>ties A gr | s<br>reater thi<br>80% | an: 2.0 |     | Ret      | ate   |

**Figure 3.** MaDA classification screen. The genes are listed showing all relevant data and standard errors. For each gene on the list you can see the corresponding spots with associated values. There is also a separated list for those genes considered differentially expressed according to the usual HTself criterion.

| المحمد المتحمد الم                                                                | 33                                                                        |                                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |              |                                                                                    |                                                                                                                               |                                                             | C |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---|
| ununeu                                                                            | p-Value:                                                                  | 5                                                                                                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |              |                                                                                    |                                                                                                                               |                                                             |   |
| #                                                                                 | lin                                                                       |                                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total    | lleed        | Min                                                                                | Fisher                                                                                                                        | Normal                                                      | Г |
| 1                                                                                 | hynothe                                                                   | etical pro                                                                                              | itein-200                                  | 140 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4        | 4            | 0.00000                                                                            |                                                                                                                               |                                                             | ŀ |
| 2                                                                                 | hedaeh                                                                    | ioa prote                                                                                               | in-20006                                   | 5.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52       | 34           | 0.001708                                                                           | 0.000000                                                                                                                      | 0.000000                                                    | ŀ |
| 3                                                                                 | 3 ubiquitin-200164.63                                                     |                                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 48           | 0.003332                                                                           | 0.000000                                                                                                                      | 0.000000                                                    | I |
| 4                                                                                 | 4 integral membrane transporter protein-301401                            |                                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 4            | 0.000017                                                                           | 0.000000                                                                                                                      | 0.000000                                                    | 1 |
| 5                                                                                 | hypothe                                                                   | tein-301                                                                                                | 763.113                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4        | 0.000854     | 0.000000                                                                           | 0.000000                                                                                                                      | 1                                                           |   |
| 6                                                                                 | 6 hypothetical protein-301844.113                                         |                                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 4            | 0.001421                                                                           | 0.000002                                                                                                                      | 0.000000                                                    | 1 |
| 7                                                                                 | signal p                                                                  | eptide-2                                                                                                | 00239.8                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16       | 12           | 0.015584                                                                           | 0.000003                                                                                                                      | 0.000000                                                    | L |
| 8                                                                                 | hypothe                                                                   | stical pro                                                                                              | tein-200                                   | 46.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8        | 4            | 0.004164                                                                           | 0.000009                                                                                                                      | 0.000001                                                    | L |
| 9                                                                                 | alpha-tu                                                                  | ubulin-30                                                                                               | 1725.40                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4        | - 4          | 0.003821                                                                           | 0.000017                                                                                                                      | 0.000003                                                    | L |
| 10                                                                                | hypothe                                                                   | etical pro                                                                                              | tein-200                                   | \$79.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        | 4            | 0.004902                                                                           | 0.000084                                                                                                                      | 0.000018                                                    | I |
| 11                                                                                | conserv                                                                   | vert hunr                                                                                               | nthetical                                  | mtein-200324 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8        | 4            | 0.000667                                                                           | 0.000098                                                                                                                      | 0.000309                                                    | L |
| Sub                                                                               | Bow                                                                       | Col                                                                                                     | Side                                       | Bead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 6            | M No                                                                               | no no/ali                                                                                                                     |                                                             |   |
| Sub                                                                               | Row                                                                       | Col                                                                                                     | Side                                       | Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | A            | M.No                                                                               | m p-Vak                                                                                                                       | ie .                                                        | 1 |
| Sub<br>10                                                                         | How<br>1                                                                  | Col<br>6                                                                                                | Side<br>1                                  | Read<br>GT01024C05.B<br>GT01024C05.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | A            | M.Noi<br>3.1479<br>3.0914                                                          | m p-Vak<br>1.3034 0.4<br>1.6252 0.4                                                                                           | Je<br>206231<br>202821                                      |   |
| Sub<br>10<br>10                                                                   | Row 1<br>7                                                                | Col<br>6<br>6                                                                                           | Side 1<br>1<br>2                           | Read<br>GT01024C05.8<br>GT01024C05.8<br>GT01024C05.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | A            | M.No<br>3.1479<br>3.0814<br>2.9025                                                 | m p-Valu<br>1.3034 0.1<br>1.6263 0.1<br>0.9405 0.1                                                                            | /e<br>006231<br>003821<br>0271.75                           |   |
| Sub<br>10<br>10<br>10<br>10                                                       | Row 1<br>7<br>1<br>7                                                      | Col<br>6<br>6<br>6                                                                                      | Side 1<br>1<br>2<br>2                      | Read<br>GT01024C05.8<br>GT01024C05.8<br>GT01024C05.8<br>GT01024C05.8<br>GT01024C05.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | A            | M.No<br>3.1479<br>3.0814<br>2.8035<br>2.7875                                       | m p-Vak<br>1.3034 0.1<br>1.6263 0.1<br>0.9405 0.1<br>1.0296 0.1                                                               | ue<br>006231<br>003821<br>027175<br>022261                  |   |
| Sub<br>10<br>10<br>10<br>10<br>Name of                                            | How<br>1<br>7<br>1<br>7                                                   | Col<br>6<br>6<br>6<br>6                                                                                 | Side<br>1<br>1<br>2<br>2                   | Read<br>GT01024C05,B<br>GT01024C05,B<br>GT01024C05,B<br>GT01024C05,B<br>301725,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | A            | M.No<br>3.1479<br>3.0814<br>2.8035<br>2.7875                                       | m p-Val<br>1.3034 0.<br>1.6263 0.<br>0.9405 0.<br>1.0296 0.                                                                   | ie<br>006231<br>003821<br>027175<br>022261                  |   |
| Sub<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                     | Row<br>1<br>7<br>1<br>7<br>the gene                                       | Col<br>6<br>6<br>6<br>e: alph                                                                           | Side<br>1<br>2<br>2<br>a-tubulin-          | Read<br>GT01024C05 B<br>GT01024C05 B<br>GT01024C05 B<br>GT01024C05 B<br>301725.40<br>Sort List by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Combi        | M.No<br>3.1479<br>3.0814<br>2.8035<br>2.7875                                       | m p-Val<br>1.3034 0.1<br>1.6253 0.1<br>0.9405 0.1<br>1.0296 0.1<br>I.0296 0.1                                                 | Je<br>006231<br>003821<br>027175<br>022261                  |   |
| Sub<br>10<br>10<br>10<br>10<br>Name of<br>dividual                                | Row<br>1<br>7<br>1<br>7<br>the gene<br>p-Values<br>tailed co              | Col<br>6<br>6<br>e: alph                                                                                | Side<br>1<br>1<br>2<br>2<br>a-tubulin      | Read GT01024C05.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        | Combi        | M.No<br>3.1479<br>3.0814<br>2.8035<br>2.7875<br>ination of p.Va<br>bine spots with | m p-Val<br>1.3034 0.1<br>1.6263 0.1<br>0.9405 0.1<br>1.0296 0.1<br>lues                                                       | ue<br>006231<br>003821<br>027175<br>022261                  | 2 |
| Sub<br>10<br>10<br>10<br>10<br>Name of<br>dividual<br>© One-<br>C Two-            | Row<br>1<br>7<br>1<br>7<br>the gene<br>p-Values<br>tailed co              | Col<br>6<br>6<br>6<br>e: alph<br>mputatic                                                               | Side<br>1<br>2<br>2<br>a-tubulin-<br>n     | Read<br>GT01024005.8<br>GT01024005.8<br>GT01024005.8<br>GT01024005.8<br>GT01024005.8<br>301725.40<br>Soft List by<br>C Min combination<br>C Fisher combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n<br>ion | Combi<br>Com | M.No<br>3.1479<br>3.0814<br>2.8035<br>2.7875<br>ination of p.Va                    | m p-Valt<br>1.3034 0.<br>1.6253 0.<br>0.9405 0.<br>1.0296 0.<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓ | ue<br>006231<br>003821<br>027175<br>022261                  | 2 |
| Sub<br>10<br>10<br>10<br>10<br>Name of<br>dividual<br>© One-<br>© Two-<br>V "Turl | Row<br>1<br>7<br>1<br>7<br>the gene<br>p-Values<br>tailed co<br>tailed co | Col<br>6<br>6<br>6<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Side<br>1<br>1<br>2<br>2<br>a-tubulin<br>n | Read<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B<br>GT01024C05.B | ion      | Combi        | M.No<br>3.1479<br>3.0814<br>2.8035<br>2.7875                                       | m p-Value<br>1.3034 0.1<br>1.6253 0.0<br>0.9405 0.1<br>1.0236 0.1<br>1.0236 0.1<br>1.0236 A                                   | ue<br>006231<br>003821<br>028251<br>022261<br>greater than: | 2 |

**Figure 4.** Screenshot of combined P values window. You may exhibit results either sorting by the chi-square values or the normal values. For each gene on the list you can see the corresponding spots with associated individual P values.

Genetics and Molecular Research 10 (4): 3586-3595 (2011)

3594

hypotheses giving his intuition for the problem and the level of evidence encountered.

MaDA was a software constructed to implement both HTself and HTself2 (with chisquare and normal methods to combine P values). It is a simple and easy to use tool.

Many researchers have been using it in our laboratories to deal with a variety of biological problems. We have shown here only one sample analysis. We hope now that the microarray community can take advantage of this useful tool.

## ACKNOWLEDGMENTS

R.Z.N. Vêncio would like to thank the support from FMRP-USP. A.P. Tonon and P. Colepicolo would like to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), for financial support. The costs of publication were covered by the Novos Docentes grant from Pró-Reitoria de Pesquisa USP.

## REFERENCES

- Bremer M, Himelblau E and Madlung A (2010). Introduction to the statistical analysis of two-color microarray data. *Methods Mol. Biol.* 620: 287-313.
- Dougherty ER (2001). Small sample issues for microarray-based classification. Comp. Funct. Genomics 2: 28-34.
- Duong T (2007). Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Software 21: 1-16.
- Farcomeni A (2008). A review of modern multiple hypothesis testing, with particular attention to the false discovery proportion. *Stat. Methods Med. Res.* 17: 347-388.
- Fisher RA (1932). Statistical Methods for Research Workers. 4th edn. London.
- Goodman SN (2001). Of P-values and Bayes: a modest proposal. Epidemiology 12: 295-297.
- Koide T, Salem-Izacc SM, Gomes SL and Vencio RZ (2006). SpotWhatR: a user-friendly microarray data analysis system. *Genet. Mol. Res.* 5: 93-107.
- Lipták T (1958). On the combination of independent tests. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 3: 171-197.
- Loughin TM (2004). A systematic comparison of methods for combining p-values from independent tests. Comp. Stat. Data An. 47: 467-485.
- NCBI (2009). The National Center for Biotechnology Information Advances Science and Health by Providing Access to Biomedical and Genomic Information. Available at [http://www.ncbi.nlm.nih.gov/geo/]. Accessed August 23, 2009.
- Ramdayal K (2010). Analytical Methods in Bioinformatics: Microarrays, Proteomics and Databases. LAP LAMBERT Academic Publishing.
- Sara H, Kallioniemi O and Nees M (2010). A decade of cancer gene profiling: from molecular portraits to molecular function. *Methods Mol. Biol.* 576: 61-87.
- Stevens JR, Bell JL, Aston KI and White KL (2010). A comparison of probe-level and probeset models for small-sample gene expression data. BMC Bioinformatics 11: 281.
- The R Foundation for Statistical Computing (2006). The R project for Statistical Computing. Available at [http://www.r-project.org]. Accessed.....
- Tonon AP and Colepicolo P (2011). Study of acclimation of *Gracilaria tenuistipitata* under stress induced by heavy metals. To be submitted.
- Vêncio RZ and Koide T (2005). HTself: self-self based statistical test for low replication microarray studies. DNA Res. 12: 211-214.
- Wenger JW, Schwartz K and Sherlock G (2010). Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. *PLoS Genet.* 6: e1000942.
- Yang YH, Dudoit S, Luu P, Lin DM, et al. (2005). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. *Nucleic Acids Res.* 30: e15.

Genetics and Molecular Research 10 (4): 3586-3595 (2011)