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ABSTRACT
Motivation: Statistical methods usually used to perform Serial
Analysis of Gene Expression (SAGE) analysis are based on
hypothesis testing. They answer the biologist’s question: ‘what
are the genes with differential expression greater than r with
P -value smaller than P?’. Another useful and not yet explored
question is: ‘what is the uncertainty in differential expression
ratio of a gene?’.
Results: We have used Bayesian model for SAGE differential
gene expression ratios as a more informative alternative to
hypothesis tests since it provides credibility intervals.
Availability: The model is implemented in R statistical lan-
guage script and is available under GNU/GLP copyleft at
supplemental web site.
Supplementary information: http://www.ime.usp.br/~rvencio/
SAGEci/
Contact: rvencio@ime.usp.br

INTRODUCTION
In Statistics it is known that there is a close relation-
ship between Hypothesis Test and Confidence/Credibility
Intervals. However, the dominance of the first approach in
Serial Analysis of Gene Expression (SAGE) (Velculescu et al.,
1995) research field is quite obvious. See Ruijter et al. (2002)
for a good review.

In spite of using different strategies, the goal of hypothesis
testing methods is to reject/accept the rule for H0: ‘the gene G

is not differentially expressed between SAGE libraries’ with
an associated significance level. Users are able to consider
only genes with expression ratios greater than some arbitrary
ratio r , with reliability expressed by P -values smaller than an
arbitrarily chosen P .

Unfortunately, these hypothesis testing approaches lose one
potentially relevant quantitative aspect of SAGE technology
since they deal only with punctual estimation for ‘expression
ratio’ random variable. See Stollberg et al. (2000) for a good
survey into several SAGE quantitative issues.

∗To whom correspondence should be addressed.

Inherent technical limitations from SAGE methodology, as
GC content bias (Margulies et al., 2001), sequencing errors
(Stern et al., 2003) as well as the possibility of non-unique
tags, could be detected/corrected using some bioinformatics
procedures. As these systematic errors need to be handled,
we believe that random sampling errors should have the same
attention. Posterior analyses could be highly improved with
knowledge of the error-bars. We believe that it could be intu-
itive for biologists to get their answers about a gene’s relative
expression as a number with error-bar, i.e. estimation by inter-
val. This motivated us to use a model that gives credibility
intervals for SAGE analysis.

SYSTEMS AND METHODS
Let π ∈ [0; 1], the unknown parameter of interest, be the
abundance of some gene G in the whole SAGE library studied,
and let N/T = p be its usual estimate, where N are the counts
for G tag and T the total number of sequenced tags. The union
of several related SAGE libraries (same cancerous tissue, for
example) could be regarded in this model as one single library
with N and T as the sum of component libraries.

For a given gene G, counting tags is a Bernoulli Process
that generates our observation (N , T ). Thus the likelihood
function is:

L(π |N , T ) ∝ πN(1 − π)(T −N) (1)

The natural choice for an a priori distribution of π is the
Beta(a, b) distribution because it belongs to conjugate class
of distributions:

π ∼ Beta(a, b) (2)

This leads to the well-known Bayesian result:

π |N , T ∼ Beta(N + a, T − N + b) (3)

When biologists lack prior knowledge about gene abund-
ance, π can assume equally any value in [0; 1] and a = b = 1,
meaning the non-informative uniform prior. With these par-
ticular parameters equation (3) is the likelihood and reaches
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Fig. 1. Example of analysis flow. Gene example: HLA-C, GTGCGCTGAG tag, NA = 21, NB = 27, TA = 37 121, TB = 28 719, non-informative
a priori, k = 20 000, and q = 0.95. Frame (a) and (b) show results for Beta random variates (stage i of the algorithm described in the text).
Solid lines are the theoretically known distribution. Frame (c) shows result for Q distribution. Solid line is the Kernel Density estimation
(algorithm’s stage ii) and the vertical lines delimit the 95% credibility interval [0.23; 0.50] (algorithm’s stage iv). Since biologists familiar
ratio is R = Q/(1 − Q), the interval is presented as [0.3; 1.0]. This example gene is considered not differentially expressed since the interval
contains ratio one. Rising credibility stringency expand the interval, but at lower credibility this example could be considered differentially
expressed.

its maximum when π = N/T = p. It is possible to incorpor-
ate biologists’ prior knowledge (Kuznetsov et al., 2002) into
the model by means of a different a priori distribution. The
non-informative priori is well suited because SAGE problems
typically have sufficient observations to overcome typical
priori assessment issues.

As usual, we define relative gene expression between two
libraries A and B as the ratio R = πA/πB. πA and πB are
completely independent.

It is not easy to derive an analytical form for the posteriori
probability distribution of R random variable, so we propose
a computational approach:

(i) draw from a pseudo-random number generator k

samples following a Beta distribution described in
equation (3) for A and B studied SAGE libraries;

(ii) for all j ∈ [1; k] samples from step (i) calculate the
ratios Rj , log2(Rj ), or 1/(1 + 1/Rj );

(iii) estimate the probability distribution of (ii) with Kernel
Density Estimator;

(iv) integrate around the kernel estimated distribution’s
mode until the desired probability (credibility level) q

is reached.

Figure 1 shows the results of all algorithm stages for a tag
in the two library examples considered in Results section.

Although the ratio R is our final aim, several researchers,
(Nadon and Shoemaker, 2002), prefer to deal with log2(R)

because it makes expression ratios symmetrical around zero.
We prefer to deal with Q = 1/(1+1/R) because it is limited as

Q ∈ [0; 1] and naturally deals with extreme cases when tran-
scripts are present in one library and absent in the other (Q = 0
and Q = 1). Nevertheless, any of these forms can be rewritten
as usual ratios. Here we use Q as our random variable, find
credibility intervals and then return to biologists familiar ratio
R notation. Figure 2 shows some important features of this
formulation.

IMPLEMENTATION
The method described above was implemented as a script in
R statistical language (www.r-project.org). R has efficient
and easy-to-use built-in functions to draw pseudo-random
numbers and Kernel Density Estimator, and can be easily
integrated into analysis pipe-line or database.

RESULTS AND DISCUSSION
To show this model in action we applied it to arbitrarily
chosen SAGE data taken from The Cancer Genome Anatomy
Project (CGAP) public database (http://cgap.nci.nih.gov/
SAGE): normal mammary gland library SAGE_Breast_
normal_AP_Br_N, with TA = 37 121 tags, versus breast
cancer library SAGE_Breast_carcinoma_MD_DCIS-2, with
TB = 28 719.

To obtain posteriori as the likelihood, we used non-
informative uniform a priori distributions for every gene, i.e.
aA = bA = aB = bB = 1. We have chosen arbitrarily q = 95%
for credibility level, but this is one of the free parameters
of the script. The 95% interval is traditionally taken, so as
0.05 significance levels, by unknown reasons. A better choice
could be guided by external confirmatory results or biologists’
experience.
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Fig. 2. Schematic view of model’s features. Frame (a) shows that some gene could be regarded as differentially expressed depending on
desired credibility stringency. In this example, choosing q = 50% or q = 95% leads to ‘differentially’ conclusion and q = 99% leads to ‘not
differentially’, since the last contains Q = 0.5 (equivalent to ratio R = 1) and the others do not. Frame (b) shows method’s behavior at extreme
case, when transcript is present in one pool and absent in other with Q = 1 or R = ∞. The 95% credibility is [0.71; 1.0] meaning that ratio is
at least 2.4. Frame (c) shows strategy similar to gene selection in hypothesis testing methods. In this example, the probability of expression
ratio being greater than 1.5 (or Q > 0.6) is 66%.

Table 1. Some results of a hypothesis testing and credibility intervals approaches

Tag Gene name NA NB r P -value 95% c.i. Diff. hyp. test Diff. 95% c.i.

GTGCGCTGAG HLA-C 21 27 0.6 0.05 [0.3; 1.0] Yes No
ACCATCCTGC IER3 12 16 0.6 0.10 [0.3; 1.2] No No
GGGGACTGAA QP-C 5 11 0.4 0.05 [0.1; 0.9] Yes Yes
AGTGTCTGTG CYR61 8 1 6.2 0.07 [1.1; 99.0] No Yes
AATATGTGGG COX6C 2 230 0.01 0.00 [0.00; 0.02] Yes Yes
ACTCAGCCCG TNFAIP2 14 1 10.8 0.01 [2.0; ∞] Yes Yes
ATAATAAAAG CXCL3 82 0 ∞ 0.00 [15.7; ∞] Yes Yes
CTTCGAAACT NDUFV2 7 0 ∞ 0.05 [1.2; ∞] Yes Yes
GCGGTGTCCG BG752037 2 0 ∞ 0.28 [0.3; ∞] No No
GTGGTGCCGC FBXO26 0 3 0.0 0.14 [0.0; 1.3] No No

Tags examples were chosen among 23 907 analyzed tags (see supplementary material for all results). A pool, with TA = 37 121, is the normal library and B pool, with TB = 28 719, is
the cancerous library. P -values were estimated by SAGE Genie’s DGED tool. c.i. is the 95% credibility interval. Diff status shows if the gene was considered differentially expressed
by each method. Other symbols are defined in the text.

A gene not differentially expressed is intuitively identified
since its credibility interval contains ratio R = 1, i.e. it is
impossible to know if πA < πB or if πA > πB with the
desired credibility, as for example inACCATCCTGC tag, IER3
gene, with r = 0.6 and [0.3; 1.2] credibility interval (see res-
ults for all tags in the supplemental material). To avoid very
sharp decision boundaries, one can determine other credib-
ility levels, (90 or 99%), and separate their differentially
expressed genes in reliability classes. However, once inter-
vals are defined, there is no way to avoid such arbitrariness,
even in traditional P -value hypothesis test approaches.

Table 1 shows some of our results along side results
provided by the hypothesis testing method implemented in

SAGE Genie Digital Genetic Expression Display (DGED)
tool (Boon et al., 2002; Lal et al., 1999) but we avoid naive
comparisons since methods are conceptually distinct and
return numbers with different interpretations. See Man et al.
(2000) for a detailed comparison between hypothesis testing
approaches.

Our approach works entirely and solely at the parametric
space instead of sample space, as in frequentist procedures.
All inference is made only upon observed data, instead of upon
‘data that could be observed but was not’, thus do not violate
Likelihood Principle (Basu and Ghosh, 1988). This means that
P -value itself, comparisons with it, adjustments for it (such
as Bonferroni), and so on, are meaningless in our approach.
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In this study we explore only credibility intervals, but the
same statistical principles can be used to construct a fully
Bayesian significance test, with more convenient signific-
ance measure, avoiding P -value adjustments and paradoxes
(Pereira and Stern, 1999).

We use tag counting as unique input data assuming that
errors detectable with some previous bioinformatics pro-
cessing were corrected.

Further development of our method will consider uncer-
tainty due to eventual counting errors or tag misclassification
(Colinge and Feger, 2001) using count correction prin-
ciples proposed recently in Stern et al. (2003), mainly for
rare transcripts; and biological variability between differ-
ent SAGE libraries and thus consider πA = (π1, . . . , πn) and
πB = (π1, . . . , πm) instead of scalars.
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