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Abstract
Background: An important challenge for transcript counting methods such as Serial Analysis of
Gene Expression (SAGE), "Digital Northern" or Massively Parallel Signature Sequencing (MPSS), is
to carry out statistical analyses that account for the within-class variability, i.e., variability due to
the intrinsic biological differences among sampled individuals of the same class, and not only
variability due to technical sampling error.

Results: We introduce a Bayesian model that accounts for the within-class variability by means of
mixture distribution. We show that the previously available approaches of aggregation in pools
("pseudo-libraries") and the Beta-Binomial model, are particular cases of the mixture model. We
illustrate our method with a brain tumor vs. normal comparison using SAGE data from public
databases. We show examples of tags regarded as differentially expressed with high significance if
the within-class variability is ignored, but clearly not so significant if one accounts for it.

Conclusion: Using available information about biological replicates, one can transform a list of
candidate transcripts showing differential expression to a more reliable one. Our method is freely
available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language
scripts at supplemental web-site.

Background
An important challenge in Serial Analysis of Gene Expres-
sion (SAGE) [1] analysis is the decision whether a gene is
differentially expressed between two classes, for example
tumoral vs. normal classes. In statistical terms, this essen-
tial step is to test the null hypothesis H0: "gene has no dif-
ferential expression between the two probed classes". A
much more usual approach is to assign an index (P-value

or Bayes factor, for example) that measures the confi-
dence/significance of the hypothesis and let the biologists
themselves to establish a cutoff of what they call
significant.

This necessity arises because counting sequenced SAGE
tags is a process prone to random and systematic errors
that affect gene expression abundance estimates.
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Systematic errors may come from various sources such as
GC content bias [2], sequencing errors [3,4] as well as the
possibility of non unique tags. This kind of error can be
detected/corrected using some bioinformatics procedures
such as quality control of automatic sequencing pipe-line
[5], or statistical estimation procedures such as "denois-
ing" [6,7]. Random errors are due to the inherent stochas-
tic characteristic of SAGE data acquisition: sampling from
automatic sequencing. Like colored balls in an urn, sam-
pling and counting SAGE tags from a library is commonly
modeled by a Bernoulli Process relying on an infinite pop-
ulation sampling approximation.

If an Expressed Sequence Tag (EST) library is non-normal-
ized, its counting data, also known as "Digital-Northern",
reflects the abundance of genes. Likewise, the Massively
Parallel Signature Sequencing (MPSS) [8] technique
counts tags to infer the transcriptome, but using a com-
pletely different strategy from traditional DNA sequenc-
ing methods, that allows augmented high-throughput
capability. Therefore, all the results discussed here are
readily applicable to "Digital-Northern" or MPSS context
since, from a mathematical viewpoint, all represent the
same bioinformatics problem: counting transcripts (as
balls in urns).

Nowadays, the variability in SAGE abundance data is
modeled only as due to sampling from sequencing, since
almost all statistical procedures are performed after aggre-
gation of observations from various libraries of the same
class, creating a "pseudo-library". See [9-11] for good
reviews on statistical techniques used in SAGE analysis.
This extensively used trick tacitly ignores the within-class
variability, i.e., the biological variability among individu-
als within a class (different patients having the same can-
cer diagnosis, for example), and could lead to
overconfident conclusions.

Results
Here we propose a Bayesian model of mixtures to account
for within-class variability as a generalization of the Beta-
Binomial model [12]. We also show that the usual
"pseudo-library" construction is a particular case of our
mixture model. Finally, we propose the use of the Bayes
Error Rate to intuitively rank the differential expression
hypothesis under a Bayesian framework, avoiding several
technicalities and difficulties such as: typeI and typeII
error analysis, Bonferroni-like multiple testing correction,
asymptotic results evocation, imposition of a test statistic
and null probability density function (pdf), and so on.

Statistical model
The counting process from automatic sequencing of one
single i-th library is often modeled as a Bernoulli Process
and a fixed unknown tag abundance πi is implicitly

assumed. The pdf of the random variable of interest,
"expression abundance" π ∈ [0;1] among all n libraries is
unknown, thus each library could be regarded as being
created by a realization of π. These features lead naturally
to mixture models [13,14]:

where: f(·) is the unknown pdf of the abundance among
same-class libraries parameterized by a vector θ, X = (x1,...,
xn) is the vector of counts in all n libraries of same class, M
= (m1,..., mn) is the vector of library sizes and L is the like-
lihood of each i-th observation.

The common procedure of merging all observations from
libraries of the same class, constructing a "pseudo-library"
before statistical inference, is recognized as a particular
case of this mixture model: just assume that all libraries
have strictly the same abundance, with no biological var-
iability. Mathematically, this is a function with infinite
probability density over one single abundance value π = θ
and zero over every other π ≠ θ, or a Dirac's Delta func-
tion. Using f(·) as a Dirac's Delta function constrained to
[0;1], turn Eq.1 into the familiar and commonly used
binomial distribution (see derivation in the Methods
section).

We believe that Dirac's Delta is a naive description of real-
life SAGE libraries. The Beta distribution is an alternative
with non-zero within-class variance to account for intui-
tively expected biological differences among them. Using
f(·) as a Beta in Eq.1, yields the so-called Beta-Binomial
model (see derivation in the Methods section).

Given the parameter vector θ that describes the random
variable π of some fixed gene G, we must decide if there is
a difference between A and B classes (e.g, tumor vs. nor-
mal classes). We propose to consider genes as being differ-
entially expressed based on non-superposition of the
predictive Beta pdfs of both A and B classes. By "predic-
tive" we mean that we use the a posteriori mode in the Beta
pdfs. The "non-superposition" intuitive feature is mathe-
matically written as the Bayes Error Rate E [15]:

where f(·) is the Beta pdf and "hat" over the parameters
indicate the values that lead to an a posteriori pdf maxi-
mum. The a posteriori distribution is obtained as usual
from Bayesian Statistical Theory (a priori pdf choice and
detailed derivation are in the Methods section).
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Intuitively, if the pdfs are "far apart", the gene probably
has reproducible differential expression between classes.
In this case, rarely could one misclassify class A as B and
vice-versa. Figure 1 gives some insight about this fact.
Using our proposed approach, the "far apart" notion
means a small Bayes Error Rate E. For adepts of the Fre-
quentist Statistics, this evidence measure could resemble a
typeI and typeII errors sum, however it is just an illustra-
tive analogy.

As in any significance test method, the experimenter must
define what is a high significance E value. This cutoff
should be guided by external and independent confirma-
tory assays. To avoid crude decision boundaries, one
could rank their significance results but there is no way to
avoid some arbitrariness in any kind of statistical test.

In the classical Frequentist Statistics framework, it is com-
mon to call a result as significant if it presents a P-value ≤
0.01 in a t-like-test, hoping that this could control the
error at this level. However, due to technical difficulties
such as lack of sensitivity of posterior confirmatory meth-
ods or high absolute expression (not differential expres-
sion) necessity, this apparent statistically sound results
could be not useful in a pragmatic sense. That is why we

prefer to rank the differential expression results and allow
researchers to establish a cutoff compatible with their sub-
sequent application for the selected genes, rather than
split them based in assumption-derived error-rate cutoffs.
People familiar with the Frequentist Statistics framework
could miss multiple testing considerations, typeI/typeII
error studies, and so on. However, in the Bayesian frame-
work, several of these concerns are meaningless since we
work with parameters space and not with sample space.
The bayesians avoid statements about "data that could be
observed but was not" and work only with available infor-
mation (prior and experimental), extracting all possible
information from data effectively observed.

For those genes classified as differentially expressed, one
should aggregate intuitive information adding "error-
bars" to expression ratios. Recently we have developed a
method to add credibility intervals to gene expression
ratio [16], which could improve posterior analyses such as
clustering [17] or comparison with microarray data.

Comparison with available methods using publically 
available data
To show the model is usefulness, we applied it to a tumor
vs. normal two-classes comparison problem. We chose a

The Bayes Error Rate illustrationFigure 1
The Bayes Error Rate illustration. This figure shows two illustrations of the proposed use of Bayes Error Rate E to define 
differentially expressing genes based on pdf of expression abundance π. The left example shows an obvious superposition of 
classes' pdf, thus a gene having this profile does not present evidence of differential expression between classes. The right 
example shows two pdfs "far apart" and genes with this kind of behaviour should be safely considered differentially expressing 
between two classes.
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subset of brain tumor SAGE data from The Cancer
Genome Anatomy Project's SAGE Genie public database
web-site [18]. The SAGE Genie performs several bioinfor-
matics protocols to assure the quality of its data with sys-
tematic errors cleaning/correction [19].

We used all 4 available libraries in SAGE Genie until Jan/
2004 from astrocytoma grade III tumors and almost all
(except the fetal library) normal brain libraries (see Meth-
ods section for details about libraries).

We want to stress 3 typical and important cases: (i) when
our measure agreed with other evidence measures accept-
ing null hypothesis H0, i.e., there is no evidence of differ-
ential behavior between tumor and normal classes; (ii)
when our method agreed with others rejecting H0, i.e.,
there is evidence of differential expression; and (iii) when
our method showed evidence in favor but other evidence
measures showed evidence against the H0. Case (iii) is the
main motivation of our method since it reveals situations
that researchers may call a gene differentially expressed
and, in fact, it could be not so significant if biological rep-
licates are taken into account. The other evidence meas-
ures used were: the Audic-Claverie bayesian evidence [20],
the classical Fisher Exact Test P-value, and the classical χ2

P-value, all obtained using the IDEG6 web-interface
[21,22] (see Methods section).

A case (i) prototype is the TTTCAATAGA tag with XT = (0,
2, 5, 8) and XN = (1, 1, 0, 0, 0, 7, 2). The Audic-Claverie,
Fisher and χ2 methods yield P-values of 0.06, 0.44, 0.41,
respectively, indicating low evidence against H0 for all
mystical significance level cutoffs ≤ 0.01, ≤ 0.05 or ≤ 0.1.
The Bayes Error Rate evidence is E = 0.61, an intuitively
unacceptable superposition level between the normal and
tumoral predictive Beta pdfs, showing that there is no sep-
arable behavior between classes. Figure 2a shows an obvi-
ous superposition between pdf and observations of this
two classes.

A case (ii) prototype is the AAAAGAAACT tag with XT = (7,
11, 18, 10) and XN = (7, 1, 2, 1, 2, 0, 3). All P-values are
0.00 (zero), significant at any cutoff level. Our evidence is
E = 0.03, showing safely that this gene behaves differen-
tially between normal brain and astrocytoma grade III
patients. Figure 2b shows that two Betas are apart from
each other and, even observing clear within-class variabil-
ity, the expression is different.

A case (iii) prototype is the TTGGAGATCT tag with XT =
(7, 239, 244, 123) and XN = (54, 27, 33, 21, 40, 196, 28).
All P-values are 0.00 (zero), indicating significant differ-
ence between classes. On the other hand, our evidence E
= 0.73 indicates high superposition between tumor and
normal classes. Figure 2c shows that within-class variabil-

ity for tumor class is not negligible. It is obvious that indi-
vidual libraries confound their results with normal brain
libraries, and the Betas have a relatively high intersection.
Using a common "pseudo-library" approach, one is lead
to call this gene as a strong discriminator between classes.
We believe that this is a suspect conclusion.

There are several other obvious case (iii) examples, such as
tag TACAGTATGT in Figure 2d, that received P-values <
0.01 from all other methods, and they are the main con-
cern of our method since they may lead to waste of
resources in clinical validation efforts of genes that, by
SAGE itself, could be left behind in favor of other promis-
ing genes. All tag results are available as additional file
and graphics for all tags are at the supplemental web-site
[23].

One could think about a case (iv) when considering
within-class variability leads one to H0 rejection, but con-
sidering "pseudo-libraries" leads to H0 acceptance. This
seems to be inconsistent since one expects that, once H0 is
accepted in a simplified model, it should also be accepted
in the complete model. In fact, we do not observe such a
situation, except by tags with P-values or Bayes Error Rate
very close to arbitrarily defined cutoff values. We believe
that these occurrences are just "edge effect"
manifestations.

Discussion
In order to assure that we are dealing with a fundamental
question in SAGE analysis, we show more insights analyz-
ing the method's robustness using the same data but
excluding "small" libraries. Also, we draw some parallels
between our proposed method and the only available
published solution for dealing with within-class variabil-
ity, a t-test approximation [12].

We used our method with all available libraries but some
of them are smaller than 50,000 tags (see Table 1). In the
SAGE community, libraries smaller than this arbitrary
limit are considered "small". Several researchers claim
that these are non-representative and should be excluded
from analysis. We observed several case (iii) tag examples
which remain as case (iii) if we use libraries with size >
40,000 and > 50,000 (shown at the supplemental web-
site only). Figure 3 shows a tag example analyzed in these
tree setups and it is clear that inclusion of "small" libraries
gave pretty much the same result, indicating robustness of
our method against small class size variations and against
"small" sized libraries. Moreover, these libraries are not
always outliers from biological sampling but seem to be
samples like any other. These results suggest that one can
use the "small" libraries, jointly with non-"small" ones,
because biological variability seems to be greater than
binomial sampling variability.
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Obviously, we are not recommending to use only "small"
libraries in SAGE analysis, but suggesting that our method
is relatively robust. For low expression genes, the bino-
mial sampling variability should become more relevant as
the library size decreases. Also, the results obtained using
two/three libraries could be very different from using just
one. These proprieties could be tag dependent since some

tags could be much noisier than others for biological rea-
sons. Some "denoising" procedure could be used before
application of our method [7]. Therefore, our findings
should be carefully interpreted.

To prove that the incoherence of using "pseudo-libraries"
methods is not a prerogative of tags showing small fold-

Maximum a posteriori Beta pdfs of classes in main prototype casesFigure 2
Maximum a posteriori Beta pdfs of classes in main prototype cases. The predictive pdf and the Bayes Error Rate E of 
both tumoral (T) and normal (N) classes, for examples tags contained in the three important prototype cases described in text, 
are shown in the figure. The 'x' and 'o' marks represent observed abundances in each tumoral and normal. Frame a) shows case 
(i) example when methods agree with "no differential expression" conclusion. Frame b) shows case (ii) example when methods 
agree with "differential expression" conclusion. Frame c) and d) show case (iii) examples when classical P-value method leads to 
significant differential expression between classes and our method indicates pdf superposition if one take within-class variability 
into account. Individual observations indicate that the classes are not clearly divided, casting doubt on "differential expression" 
conclusion.
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changes, we analyzed another three very illustrative exam-
ples: ATGGCAACAG, GGATGTGAAA, and
GTATGGGCCC; which are case (iii) tags. These tags
present high fold changes: 7.59, 8.15 and 25.80 fold-
change respectively, augmented in pooled tumor libraries.
Using the well-known Fisher Exact test, χ2 classical test
and the Audic-Claverie's method, we get 0.00 (zero!) for

all P-values of the no differential expression null hypoth-
esis. Using the conceptually different Bayesian P-value
implemented at SAGE Genie [24,25] we obtain 0.01, 0.00
and 0.00 respectively for posterior probabilities of fold-
changes greater than 4-fold. Finally, using our own pro-
posed measure, applied to the pool, we get E = 0.00 mean-
ing no superposition between the two classes pdfs. All

Table 1: Brain tumor and normal libraries from SAGE Genie used as real data application.

# Library Name GEO accession Total Tags

1 SAGE_Brain_astrocytoma_grade_III_B_H1020 GSM697 51573
2 SAGE_Brain_astrocytoma_grade_III_B_H970 GSM14763 106982
3 SAGE_Brain_astrocytoma_grade_III_B_R140 GSM14773 118733
4 SAGE_Brain_astrocytoma_grade_III_B_R927 GSM14766 107344
5 SAGE_Brain_normal_cerebellum_B_1 GSM761 50385
6 SAGE_Brain_normal_cerebellum_B_BB542 GSM695 40500
7 SAGE_Brain_normal_cortex_B_BB542 GSM676 94233
8 SAGE_Brain_normal_cortex_B_pool6 GSM763 62451
9 SAGE_Brain_normal_peds_cortex_B_H1571 GSM786 77554
10 SAGE_Brain_normal_substantia_nigra_B_1 GSM14796 42498
11 SAGE_Brain_normal_thalamus_B_1 GSM713 24015

Effect of "small" size libraries on the final resultFigure 3
Effect of "small" size libraries on the final result. The predictive pdf and the Bayes Error Rate E of both tumoral (T) and 
normal (N) classes for examples tags contained in the three important prototype cases described in text are shown. The 'x' 
and 'o' marks represent observed abundances in each tumoral and normal libraries. Frame a) shows the result using all librar-
ies. The "small" libraries (size < 50,000) are highlighted with their counts over library size. Frame b) shows results excluding 
those "small" libraries. It is clear that results are pretty much the same and that "small" libraries are not (necessarily) outliers of 
the sampling.
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these results indicate strong significance in differential
expression of these tags.

However, if we consider within-class variability, the test
proposed by Baggerly et al. [12] yields 0.08, 0.07 and 0.15
respectively for t-test P-values, and our method yields
Bayes Error Rates of 0.38, 0.37, 0.43 respectively; indicat-
ing not so significant evidence in favor of the differentially
expressed hypothesis. A closer look at the graphics of
these tags induces one to believe that there is no reproduc-
ible differential expression because several observations
of tumor and normal are superimposed (all graphics
available at supplemental web-site [23]).

Since we show clearly that methods that use "pseudo-
library" aggregation could be incoherent in some cases, a
natural question is how our proposed method performs
compared to the only published solution that accounts
for within-class variability, the Baggerly et al. [12]t-test
approximation. Without knowing the true state of all tags,
it is impossible to carry out a serious benchmark. Since the
interpretation of evidence measures is very different, the
performance could be subjected to an arbitrary cutoff
selection for each method. Figure 4 shows a scatter-plot of
evidence measures obtained for each of the two methods.

It is clear from this graphic that there are many more tags
considered as differentially expressed using our method
than the t-test approximation, considering E ≤ 0.1 and P-
value ≤ 0.01. There are also some tags selected by t-test
and ignored by ours. It is impossible to know which
method perform better without the true unknown status
of those tags. Looking at individual libraries results, con-
structed as depicted in Figure 2 for example, could help in
this analysis but this is a subjective procedure.

It is important to bear in mind that a difficulty is hidden
in the Beta modeling imposed in the very first beginning.
If Beta is not a good model for an unknown biological
behavior, then some apparent inconsistency could appear
in both Baggerly et al. [12] and our approaches. However,
our general mixture model allows another propositions.
Other simplex constrained pdfs, different from Beta, exist
but the tractability is much more difficult [26]. We believe
that to build a fully non-parametric approach to this prob-
lem is a very hard issue, but should be considered as a
future challenge.

Conclusion
Until now, almost all statistical methods for SAGE data
analysis tacitly ignore the within-class variability. To our
knowledge, the firsts to formally address this issue was
Baggerly et al. [12] who introduced the Beta-Binomial
model as the correct way to model the probability of
counting tags instead of Binomial models. They also

proposed a t-like statistics, outlined a possible hypothesis
test using the classical Frequentist Statistics framework
and evoked some asymptotic results for t pdf justification.

In this work we presented the Bayesian alternative for this
problem and defined a theoretical model that views Bag-
gerly's Beta-Binomial approach or even the common
Binomial approach as particular cases of mixture models.
Other models are possible modifying the mixing distribu-
tion, such as Beta-Poisson [14], or using other simplex
constrained pdf [26] to model expression abundance. At
last, but not at least, we proposed a method for ranking
differentially expressed genes between two classes using
the Bayes Error Rate as an intuitive measure of separation
between the classes pdfs, avoiding statistical test formal-
ism and its conceptual/practical difficulties.

We show that there are cases in which approaches that
ignore within-class variability will lead to high signifi-
cance in differences between tumor and normal classes,
but looking carefully at individual observations jointly,
one should not attribute such high significance to them
since abundance probability density functions have con-
siderable superposition.

Qualitative comparison of Bayes Error Rate and t-test approximationFigure 4
Qualitative comparison of Bayes Error Rate and t-
test approximation. It is shown the Bayes Error Rate (E) 
versus the t-test approximation P-value (Baggerly) [12] for 
each tag. The red lines are arbitrary cutoffs that define signif-
icance regions E ≤ 0.1 and Baggerly ≤ 0.01. The green line is a 
LOWESS trend fit.
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In conclusion, we recommend that within-class variability
must be taken into account in any statistical analysis of
SAGE data if replicates are available. We suggest that bio-
logical replication should be considered in planning new
SAGE experiments.

Methods
General bayesian model
To start generically, suppose that the probability density
function (pdf) for the random variable of interest "expres-
sion abundance" π ∈ [0;1] of some gene G is indexed in a
model family by means of a parameter vector θ. Therefore,
following the usual Bayesian framework, the a posteriori
pdf that describes the class is:

where: X = (x1,..., xn) is the vector of counts in all n librar-
ies of same class, M = (m1,..., mn) is the vector of total
observations in all n libraries of same class, g(·) is the a
priori pdf, and L is the likelihood of each i-th observation.
Note that the product of all likelihood functions over all
observations is the so-called Likelihood Function.

The counting process from automatic sequencing is often
modeled as a Binomial. Since the sample size and the
stopping rule are not known in advance the model is not
strictly Binomial. We do not need the combinatorial con-
stant in the model, but we write it just because it is com-
monly used and will vanish in posteriori expression
anyway.

"Pseudo-Library" method as particular case
Merging all observations from the same class libraries and
constructing "pseudo-libraries", with the sum of their
components, is the standard procedure to use replicates.
Our general model is reduced to this (unrealistic) one if
one uses f(·) as a Dirac's Delta in Eq.1:

where: 1{·} is the indicator function.

Using Eq.4 in Eq.3 yield:

where: g(θ) = 1, the non-informative uniform a priori dis-
tribution.

The expert recognizes that θ ~ Beta(1 + Σxi, 1 + Σmi - Σxi),
and the sum of observations is the mathematical transla-
tion of "pseudo-libraries" construction.

Beta-Binomial method as particular case
The only published solution that allows non-zero within-
class variance in SAGE analysis is the Beta-Binomial
model [12]. Using f(·) as a Beta in Eq.1 we get the Beta-
Binomial model as a particular case of general model:

where: B(·) is the beta special function, and:

Again, an expert recognizes θ = (θ1, θ2) as the mean and
standard deviation (stdv) of a Beta random variable. We
prefer this parameterization of Beta distributions instead
of the common (α, β) one because: (i) it is much more
intuitive to biologists to deal with mean and stdv than
with abstract α and β, and (ii) as α, β > 0, the domain Θ =
{(θ1, θ2): 0 ≤ θ1 ≤ 1, 0 ≤ θ2

2 <θ1 (1- θ1) ≤ 1/4} is bounded
and much more amenable to perform the necessary
numerical computations.

Using Eq.6 in Eq.3 yield:

where: g(θ1, θ2) is the priori pdf.

A Priori distribution definition
To complete a Bayesian model, it is necessary to choose
the a priori pdf. We use an uniform distribution over Θ.
On the other hand, we know in advance that variance of
this model cannot be smaller than the variance eventually
obtained if we do not consider within-class variability.
Even if the within-class variability is very small, it cannot
be estimated as being smaller than the simple sampling
error because they are inseparable, and sampling error is
the lower limit [12]. As an illustration, the same situation
could occur if one takes several diameter measurements of
a folded paper ball and a perfect sphere using a common
ruler. In the first case, the intrinsic nature of the measured
object dominates the measurement variability but, in the
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second case, we cannot know the diameter of the perfect
sphere with better precision than our ruler can measure.

This kind of knowledge is naturally incorporated in Baye-
sian statistics by means of a priori distributions. To match
our desired features, it is sufficient to define an uniform
over the Θ parameter space but constrained at a minimum
stdv σ, obtained from the result of no within-class vari-
ance model:

over domain Θ = {(θ1, θ2): 0 ≤ θ1 ≤ 1, 0 ≤ θ2
2 <θ1 (1 - θ1) ≤

1/4}.

Since we showed (Eq.5) that the no within-class variance
model is θ ~ Beta(1 + Σxi, 1 + Σmi - Σxi), it is easy to obtain
our lower stdv boundary from Beta variance:

Therefore, using Eq.9 and Eq.10 in Eq.8, our posteriori is
completely defined.

Differential expression detection
We detect a tag as differentially expressed using the Bayes
Error Rate E [15] in both predictive Beta pdfs:

where:

Note that f(·) is the Beta pdf, as in Eq.6 development. The
"hat" over θ = (θ1, θ2) indicates values that leads Eq.8 to
maximum. As usual, the maximization, subject to con-
strain Θ defined previously, is made upon logarithm of
posteriori's core since it gives the same estimates as the pos-
teriori itself:

Figure 5 shows an example of this process. See Results sec-
tion to get an intuitive notion of this evidence measure.

Implementation – numerical analysis
The method was implemented as R language [27,28]
scripts which are freely available under GPL/GNU copyleft
license at supplemental web site [23]. At this web page
there are details on how to run it locally.

Our method is computer-intensive mainly because some
numeric maximization and integration are needed. We
used efficient R built-in routines to perform such numeri-
cal tasks. Remember that maximization needed in Eq.12
is constrained, thus we used simply auxiliary re-parame-
terization to obtain linear constrains and used the con-
strOptim R routine. For numerical integration we used the
1-dimensional gaussian quadrature integrate R built-in
function. Although numerical integration of Eq.9 should
be performed in all [0;1] support, the relevant contribu-
tion for this integral is concentrated in a much smaller
region. Integrating over the formal limits will cause seri-
ous numerical errors, and to avoid this problem we
approximate our integration region to an interval delim-
ited by 0.005 and 0.995 quantile of each Beta pdf since
the relevant density lie in there.

The credibility intervals ("error-bars") for the expression
ratio of interesting tags were obtained as described in our
recent work [16]. We chose arbitrarily 68% credibility
intervals.

Implementation – Web based interface
We have also developed an easy-to-use web-based service
that performs all calculations at our server and provides
password-protected results. Although desirable, for the
sake of automatic web hyperlink with SAGE Genie data-
base, it is not necessary to explicitly identify the tags ana-
lyzed but rather any (custom) i.d. string. This could
increase privacy or make our web-interface useful for
"Digital-Northern", MPSS or any mathematically related
problem of mixtures from binomial sampling. Figure 6
shows snapshots of the interface.

Publically available data
The Table 1 list the SAGE Genie's library name, Gene
Expression Omnibus (GEO) [29] accession code and size
of all used libraries.

For our aims, it is sufficient to focus the analysis at the tag
level. Thus, we process the tag counts and let the
identification of tag's best gene match as a posterior ques-
tion that could be carefully done only to really interesting
tags. We choose not to process tags whose counts appear
only in libraries of one class. It is important to note that
all libraries are from bulk material, without cell-lines, and
came from patients with similar disease description. The
normal libraries came from different normal regions of
the brain.
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We think that this data set is very illustrative since there
are biological replicates in the tumor class allowing clear
verification of within-class biological variability. On the
other hand, taking only one kind of disease, astrocytoma
grade III, instead of all brain tumors in the database, leads
one to believe that the within-class variability is in fact
due to biological diversity of the patients and not due to
very distinct molecular profile of distinct brain tumors
stored in SAGE Genie's database.

Therefore, we believe that this in silico comparison is well-
suited to demonstrate the necessity of dealing with

within-class effect, although it is not our aim here to make
a detailed or biological analysis of brain tumor data.

Comparison with other methods
To bring some intuition about our differential expression
evidence measure, we tabulated evidence measure
obtained from the famous Fisher Exact Test, the classical
Pearson's χ2 proportion test and the bayesian Audic-Clav-
erie's method. All these tests were performed using the
easy-to-use web-interface IDEG6 [21,22].

Illustration of Maximum a Posteriori parameter estimationFigure 5
Illustration of Maximum a Posteriori parameter estimation. The maximum a posteriori parameters of Eq.12 in an arti-
ficial example it is shown. The bi-dimensional pdf from which "hat" (pointed by the arrow) parameters are extracted is propor-
tional to that described in Eq.8.
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The "P-values" are conceptually very different from our
evidence measure but are the most used evidence meas-
ures. Although numbers cannot be compared, the conclu-
sions obtained from these methods should be since
graphical representation of each library observation gives
clear indication of incoherence of "pseudo-library" meth-
ods. The results of the significance measures for all tags are
available as additional Excel© or OpenOffice© interactive
files in which the user can set cutoffs for the significance
measures, and explore the differences in conclusions.

We carry out a qualitative comparison of our method with
Baggerly et al. [12]t-test approximation in a graphical way
since it is impossible to judge them without the unknown
true status of analyzed tags, given the too different inter-
pretation of numeric values returned. In their Frequentist
framework, the estimator pi = xi/mi is used for πi and a lin-
ear combination of these abundances is proposed as the
correct way to combine results from different libraries:

Snapshot of the web-interface for our SAGEbetaBin methodFigure 6
Snapshot of the web-interface for our SAGEbetaBin method. An illustration of on-line tool implemented to make our 
method easily available it is shown. Researchers submit their data (A) and receive, by e-mail, an alert when we finished the job 
along with instructions to get results in a password-protected web-page (B). If the ID supplied is a human tag (C), then results 
are linked with SAGE genies' tag-to-gene map. The individual observations graphics, as utilized in this work, is available on-
demand (D).
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where wi are the weights that yield an unbiased minimum
variance estimator Vu for weighted proportion's variance
and θ = (α, β) are the Beta pdf parameters. However, this
unbiased variance could be unrealistically small when it
becomes smaller than the sampling variability. We know
that the variance of this model cannot be smaller than the
variance eventually obtained if we do not consider within-
class variability. Therefore, they propose the final ad hoc
estimator:

V = max [Vu; Vpseudo-lib]  (14)

where:

The max(·) function assure that V is not unrealistic small
when Vu is unrealistic small. To fit all these parameters,
they used the computationally practical Method of
Moments. Once pA, pB, VA and VB are found for classes A
and B, these authors test if the proportions are signifi-
cantly different proposing the use of a tw statistics as fol-
lowing a Student's tdf pdf:

List of Abbreviations
SAGE: Serial Analysis of Gene Expression

MPSS: Massively Parallel Signature Sequencing

EST: Expressed Sequence Tag

pdf: probability density function

GEO: Gene Expression Omnibus

Authors' Contributions
RV conceived and executed this work. HB helped with all
biological issues. DFCP helped in differential expression
detection methods and implemented the on-line web-

based tool. CABP helped with Bayesian statistics and pro-
posed the mixture ideas.

Additional material

Acknowledgements
RV is supported by FAPESP 02/04698-8 fellowship. We thank Tie Koide for 
critical reading of the manuscript and BIOINFO-USP/Rede-Vision for com-
putational support.

References
1. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis

of gene expression. Science 1995, 270:484-487.
2. Margulies EH, Kardia SL, Innis JW: Identification and prevention

of a GC content bias in SAGE libraries. Nucleic Acids Res 2001,
29:e60.

3. Stern MD, Anisimov SV, Boheler KR: Can transcriptome size be
estimated from SAGE catalogs? Bioinformatics 2003, 19:443-448.

4. Stollberg J, Urschitz J, Urban Z, Boyd CD: A Quantitative Evalua-
tion of SAGE. Genome Research 2000, 10:1241-1248.

5. Akmaev VR, Wang CJ: Correction of sequence based artifacts
in serial analysis of gene expression. Bioinformatics 2004,
20:1254-1263.

6. Morris JS, Baggerly KA, Coombes KR: Bayesian shrinkage estima-
tion of the relative abundance of mRNA transcipts using
SAGE. Biometrics 2003, 59:476-486.

7. Blades NJ, Jones JB, Kern SE, Parmigiani G: Denoising of data from
serial analysis of gene expression. Bioinformatics  in press.

8. Brenner S, Johnson M, Bridgham J: Gene expression analysis by
massively parallel signature sequencing (MPSS) on
microbead arrays. Nature Biotechnology 2000, 18:630-634.

9. Man MZ, Wang X, Wang Y: POWER_SAGE: comparing statis-
tical tests for SAGE experiments. Bioinfo matics 2000,
16:953-959.

10. Romualdi C, Bortoluzzi S, Danieli GA: Detecting differentially
expressed genes in multiple tag sampling experiments: com-
parative evaluation of statistical tests. Hum Mol Genet 2001,
19:2133-2141.

11. Ruijter JM, Kampen AHC, Baas F: Statistical evaluation of SAGE
libraries: consequences for experimental design. Physiol
Genomics 2002, 11:37-44.

12. Baggerly KA, Deng L, Morris JS, Aldaz CM: Differential expression
in SAGE: accounting for normal between-library variation.
Bioinformatics 2003, 19:1477-1483.

13. Aitchison J, Dunsmore IR: Statistical Prediction Analysis Cambridge:
Cambridge University Press; 1975. 

14. Bueno AMS, Pereira CAB, Rabello-Gay MN, Stern JM: Environmen-
tal genotoxicity evaluation: Bayesian approach for a mixture
statistical model. Stochastic Environmental Research and Risk
Assessment 2002, 16:267-278.

15. Duda RO, Hart PE, Stork DG: Pattern Classification 2nd edition. New
York: Wiley-Interscience Press; 2000. 

16. Vêncio RZN, Brentani H, Pereira CAB: Using credibility intervals
instead of hypothesis tests in SAGE analysis. Bioinformatics
2003, 19:2461-2464.

p w p V

w p p w

w

w
m

i i
i

n i i i
i

n

i

n

i
i

n i
i= =

−

−
∝

+( )
=

==

=

∑
∑∑

∑1

2 2 2 2

11

2

1

1

, ,u
α β

αα β+ + mi
( )13

V

m

x

m

x

m
pseudo lib

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n−

=

=

=

=

=

= −













∑

∑

∑

∑

∑
1

1

1

1

1

1

1 







t
p p

V V
df

V V

V
m

V
m

w
A B

A B

A B

A

i
A

B

i
B

= −
+

=
+( )

−
+

−∑ ∑

, ( )
2

2 2

1 1

15

Additional File 1
Results for all evidence measures. This file allows the user to interac-
tively define significance cutoffs for ranked tags. The ranks are based on 
evidence measures against "no differential expression" hypothesis, i.e., 
evidences closer to 0 (zero) denote higher confidence in differential 
expression and closer to 1 (one) denote no evidence of differential 
expression.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-119-S1.xls]
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