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Abstract

Different statistical methods have been used to classify a gene as differentially expressed in microarray
experiments. They usually require a number of experimental observations to be adequately applied.
However, many microarray experiments are constrained to low replication designs for different reasons,
from financial restrictions to scarcely available RNA samples. Although performed in a high-throughput
framework, there are few experimental replicas for each gene to allow the use of traditional or state-of-art
statistical methods. In this work, we present a web-based bioinformatics tool that deals with real-life prob-
lems concerning low replication experiments. It uses an empirically derived criterion to classify a gene as
differentially expressed by combining two widely accepted ideas in microarray analysis: self–self experiments
to derive intensity-dependent cutoffs and non-parametric estimation techniques. To help laboratories with-
out a bioinformatics infrastructure, we implemented the tool in a user-friendly website (http://blasto.iq.
usp.br/�rvencio/HTself).
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DNA microarray technology has allowed the study of
gene expression in a genomic scale, changing the para-
digm of expression studies of a single gene to a high-
throughput framework. As this technology becomes
cost accessible, more laboratories can use it as a routine
technique.1 By comparing two samples labeled with dif-
ferent fluorescent dyes, one can classify a gene as differ-
entially expressed (or divergent, if dealing with genomic
hybridizations) using a variety of statistical methods.2–4

The ideal design of microarray experiments consists in
having as many biological and technical replicates as pos-
sible, so that the data can be analyzed using state-of-art
statistical tools. Unfortunately, it is not always possible
to fulfill these replication requirements.

For instance, in laboratories with financial restrictions,
the microarrays are used as a high-throughput screening
tool. In this case, it is preferable to perform low replicated

experiments and test different biological conditions.
Another example is the study of rare human diseases.
This kind of research is naturally constrained to low rep-
lication, since the RNA available usually comes from only
one or two patients. Although not ideally replicated, these
studies are undoubtedly important. However, they will
not be properly analyzed using traditional or state-of-art
statistical methods that require a number of replicates
and assume certain hypothesis concerning the distribu-
tion of the samples that cannot be verified.

The aim of this work is to provide an easy-to-use bio-
informatics solution for the analysis of microarrays con-
strained to low replication. To achieve our objective, we
explored simultaneously two widely accepted ideas in
microarray analysis: the determination of intensity-
dependent cutoffs using self–self experiments5–7 and the
use of non-parametric methods.8–10 Our contribution is to
implement a web-based tool to help the analysis of
microarray datasets with low replication designs. The
web-based interface is freely available at http://blasto.
iq.usp.br/�rvencio/HTself.
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When analyzing a microarray data, a major question is
how to classify a gene as differentially expressed. To
answer this question, it is necessary to set a cutoff level
for hybridization intensities ratios that permits one to
decide whether a gene is differentially expressed or not.
In mathematical terms, this step consists in testing the
null hypothesis H0: ‘the spot has no differential hybrid-
ization between the two probed samples’.

There are many mathematical approaches to define
cutoffs and reject H0.

2–4 A simple and widely used strat-
egy consists in arbitrarily choosing a constant ratio, com-
monly the 2-fold change threshold. Spotted genes with
ratios above this threshold are considered as differentially
hybridized. To bring some statistical rigor, it is common
to perform traditional statistical tests such as the t-test,
using log-ratios and an arbitrary threshold. It will provide
a p-value to access the significance level of the test for a
given gene. To be adequately applied, one has to verify
that the log-ratios for the given gene are normally distrib-
uted and that the number of observations is not scarce.
Another approach is to assume a statistical model for the
whole slide behavior (commonly a t-student like or a nor-
mal model), define it as the null probability density func-
tion (pdf) and search for outliers.2–4 Again, this strategy
requires the data to be distributed according to some
known and arbitrarily proposedmodel. Since this assump-
tion does not always hold for microarray data, different
non-parametric procedures have been proposed to define
the null pdf of the hybridization log-ratios for a given
gene.8–10 However, since they are usually based on res-
ampling, permutation, standard deviation estimation,
order/rank statistics, etc., it might not be a good choice
to derive the pdf for an individual gene with few experi-
mental observations.

Another category of approaches to define cutoffs relies
on experimental strategies such as the use of self–self
hybridizations. Self–self experiments are performed by
labeling the same biological material with either Cy3
and Cy5 dyes and hybridizing them simultaneously on
the same microarray slide. This strategy has been used
to derive intensity-dependent cutoffs to classify a gene as
differentially expressed5,6,11 or divergent in comparative
genomic hybridization (CGH) studies.7,12 The comparat-
ive analysis of constant fold change cutoffs and intensity-
dependent ones has been extensively discussed, showing a
superior performance of the intensity-dependent
strategy.5–7,11,12

In our tool, we make use of self–self experiments to
derive the null probability density function of the test.
Since the null hypothesis ‘there is no differential hybrid-
ization between the two probed samples’ holds for all the
genes in a self–self experiment, it is possible to escape
from the gene-by-gene schema and use all the spotted
genes to derive the null pdf. With an adequate amount
of observations (all the spotted genes), the use of non-
parametric methods is now feasible. To take into account

the intensity-dependent feature of the data, the null pdf is
estimated in a user-defined sliding-window, which slides
over all the range of the spots’ intensity measure. This
procedure results in the determination of intensity-
dependent cutoffs that are readily applicable to non-
self–self experiments. It is implicitly assumed that the
same stochastic processes that generated the experi-
mental noise in self–self experiments are acting in non-
self–self data. Therefore, log-ratios above or below the
intensity-dependent cutoffs can be classified as differen-
tially expressed. The use of these experimentally derived
cutoffs relaxes the requirement of replicates, since it does
not count on standard deviation estimations, resampling
or permutations. Moreover, it adds an empirically derived
criteria to classify a gene as differentially expressed in
studies constrained to low replication.

Our web-based tool expects a normalized data set as
input. Microarray data usually must be normalized due to
multiplicative biases such as unequal brightness of fluor-
escent dyes, unequal incorporation rate of dyes, etc. Such
preprocessing procedures are well discussed and web-tools
to address this problem are available elsewhere.13–15

Next, we will describe the mathematical details behind
our method.

Let A ¼ log2(cy3)/2 þ log2(cy5)/2 and M ¼ log2(R),
as usual in microarray analysis,16 be the random variables
of interest, where cy3 and cy5 are the fluorescence intens-
ities and R is the suitably normalized intensities ratio. To
represent our measurement, we prefer to use the M–A
plot, where the variable A shows the dependence of the
log-ratios on the average spot intensity. The procedure
can be used with arbitrary reparametrizations of hybrid-
ization ratio and measurements of fluorescence intensit-
ies. An observation of a spot s is one realization of (A,M)
and is denoted by (as,ms). Therefore, self–self hybridiza-
tion measurements are samples drawn from the (A,M)
bidimensional null joint pdf. To find the intensity-
dependent log-ratio cutoffs, we first select a sliding-
window in A, which is defined by the user.
The observed spots (as, ms) contained in this window
will be used to define the MjA null pdf locally. This pdf
is estimated by applying the gaussian Kernel Density
Estimator.

The Kernel Density Estimator is a model-free
method that approximates the probability density
function of a random variable using observations
sampled from it.17 Let f be the pdf of a random
variable X and x1,. . .,xn, n observed samples. The
estimator for f is

bf hf h xð Þ ¼ 1

nh

Xn
i¼1

K
xi�x

h

� �

where the ‘hat’ over f indicates an estimator, h is the
bandwidth and K is the kernel function. For example,
a simple histogram can be described by a particular
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Kernel Density Estimator:

bffh xð Þ ¼
Xn
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The gaussian Kernel Density Estimator is the most
known and is the one used in our tool:
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The formulae above can be intuitively interpreted as a
smoothing process for the histogram.

After estimating the null pdf of M for a given A
window, the user-defined credibility interval can be
determined. In short, our algorithm to define intensity-
dependent cutoffs is

(i) the user defines a sliding window for A axis inputting
two parameters: the window size and the walking
pace. Each step of the sliding window delimits an
arbitrary subinterval of A;

(ii) for each subinterval of A selected in (i), estimate the
probability density function of MjA using gaussian
Kernel Density Estimator;

(iii) integrate the probability density function from (ii)
around the mode until the user-defined probability is
reached. The intervals obtained are called the a cred-
ibility intervals;

(iv) the steps (ii) and (iii) are repeated until the window
has slid over all the A range.

Figure 1 shows a snapshot of the algorithm in an
arbitrarily chosen step. It was performed using the
self–self data from a genomotyping study in the bacteria
Xylella fastidiosa. Figure 2 shows the result of the self–self
derived intensity-dependent cutoffs for this data. Since we
know that there should not exist true differential hybrid-
ization in self–self experiments, it is clear that the

commonly used 2-fold change would be conservative for
high intensity spots and permissive for low intensity ones.

After defining the intensity-dependent cutoffs, differ-
ent microarray experiments made within the same tech-
nical conditions of self–self data can be evaluated. For
example, suppose that a spot measurement (a,m)
shows a log-ratio m outside its intensity-dependent
99% credibility cutoff. It can be classified as a differenti-
ally expressed spot since there is just 1% of chance that its
measured log-ratio is due to random technical errors. This
hypothesis test is applied to all spots. Since the test is
applied to an individual spot, it does not depend on the

Figure 1. Snapshot of one step of the sliding window process. The left panel shows the MA-plot of the self–self data from a genomotyping CGH
study.12 The subinterval A considered in this snapshot is highlighted between the vertical lines. The histogram of M shown on the right was
constructed using these highlighted observations. The Kernel Density Estimator (dark line) and the boundaries of the 99.5% credibility interval
(vertical lines) are also shown. These boundaries define the intensity-dependent cutoffs, shown on the MA-plot (dark points) along with the
results from previous steps. See all the steps in Supplementary Figures at the web-site (http://blasto.iq.usp.br/�rvencio/HTself).

Figure 2. Web-site output for intensity-dependent cutoff determina-
tion. The self–self data used as an input example for the web-
based tool is derived from a Xylella fastidiosa CGH study.12 The
dark lines are the upper and lower cutoffs. They were obtained by
the sliding window process using a 99.5% credibility level, 0.3 pace
and 1.0 window size.
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number of replicates. If one has a number of replicated
observations for a given gene, after applying the test to
each spot, it is possible to evaluate easily if they are above
or below the intensity-dependent cutoff and classify the
gene as differentially expressed. Our tool has been suc-
cessfully applied to a recently published gene expression
study in Xylella fastidiosa.18 It can also be useful for CGH
studies.12

To use many of the available statistical tools, it is
necessary to have well-replicated designs. Although
many efforts have been carried out to sample as many
replicates as possible, sometimes it is still difficult to
achieve a well-replicated design. Financial restrictions
or even biological constraints concerning rare RNA sam-
ples do not allow some researchers to analyze their
microarray data according to current statistical stand-
ards. With this web-based tool, we hope to help these
researchers to extract the invaluable information from
their datasets constrained to low replication.
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