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Abstract
Background: The search for enriched (aka over-represented or enhanced) ontology terms in a
list of genes obtained from microarray experiments is becoming a standard procedure for a system-
level analysis. This procedure tries to summarize the information focussing on classification designs
such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes.
Although it is well known in statistics that association and significance are distinct concepts, only
the former approach has been used to deal with the ontology term enrichment problem.

Results: BayGO implements a Bayesian approach to search for enriched terms from microarray
data. The R source-code is freely available at http://blasto.iq.usp.br/~tkoide/BayGO in three
versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be
controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock
response dataset, since this stress triggers known system-level responses.

Conclusion: The Bayesian model accounts for the fact that, eventually, not all the genes from a
given category are observable in microarray data due to low intensity signal, quality filters, genes
that were not spotted and so on. Moreover, BayGO allows one to measure the statistical
association between generic ontology terms and differential expression, instead of working only
with the common significance analysis.

Background
A systems biology approach which is becoming increas-
ingly used in microarray data analysis is the search for
enriched (aka over-represented or enhanced) terms in a
list of interesting genes. This kind of approach tries to dis-
close the biological meaning behind the massive amount
of data derived from high-throughput techniques [1,2]. By

translating the results into a more human-friendly output,
the search for over-represented terms can reveal pathway
connections to track biological processes, helping the
biologists to build system-level hypotheses.

The problem of ontology term enrichment is generally
treated as the test for terms in a gene list that are present

Published: 23 February 2006

BMC Bioinformatics2006, 7:86 doi:10.1186/1471-2105-7-86

Received: 17 October 2005
Accepted: 23 February 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/86

© 2006Vêncio et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/86
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16504085
http://blasto.iq.usp.br/~tkoide/BayGO
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2006, 7:86 http://www.biomedcentral.com/1471-2105/7/86
in higher numbers than it would be expected only by
chance. The terms analyzed are generally derived from an
ontology or a classification design. Many genome
sequencing projects define their own organism-specific
gene classification but recently, we are witnessing an
increase in the use of general and standardized vocabular-
ies and classification procedures, such as the one pro-
posed by The Gene Ontology Consortium [3] or by the
KEGG database [4].

There are many software packages and web sites address-
ing the ontology term enrichment problem and it is diffi-
cult to acknowledge all of them. The most commonly
known are those listed in the Gene Ontology [5] web-site
[6], such as: Onto-Express [7], GeneMerge [8], FuncAsso-
ciate [9], FatiGO [10], GOstat [11], GOArray [12],
GO::TermFinder [13], THEA [14] and OntologyTraverser
[15]; but there are other options such as LACK [16], which
deals with generic lexical bias. Recently, more than ten dif-
ferent tools were compared and reviewed in [17].

Despite several options, there is no software that searches
for enriched ontology terms using a Bayesian statistical
framework. Moreover, to our knowledge, all the software
packages available are based on the hypothesis test para-
digm. We believe that, with the aim of defining enriched
terms, the measure of statistical association can be an
informative alternative or a useful complement to the
usual statistical significance. Thus, our original contribu-
tions in this work are: (i) to provide a software that meas-
ures the statistical association between differential gene
expression and a given ontology term and (ii) to present a
statistical model for the enrichment problem that takes
into account the realistic fact that, sometimes, not all the
genes previously known as related to a given property are
in fact observed.

We provide a mathematical source-code that can be easily
accommodated into pre-existent software packages or
pipelines, in addition to a version for Windows that can
be interactively controlled and a web-tool that supports
organisms that share special local interest and are
neglected by mainstream tools.

Implementation
Measure of statistical association
The genes in a microarray dataset can be organized using
a classification scheme such as GO [3], KEGG [4] or an
organism-specific categorization. Let i be the list of genes
related to the term(s) in focus. Let j be the list of genes
related to term(s) different from the term(s) i. The dataset
is described by a 2 × 3 contingency table:

where: Xi-j is the number of differentially expressed genes

that are i-exclusive, Ni-j is the total number of genes that

are i-exclusive, Xij is the number of differentially expressed

genes belonging to the i and j intersection, Nij is the total

number of genes belonging to the i and j intersection, Xj-i

is the number of differentially expressed genes that are not
related to the term i (thus j-exclusive) and Nj-i is the total

number of genes that are not related to the term i (thus j-
exclusive). Note that a given gene must be counted in one
and only one of these cases and that summing over all N.
yields the total number of considered genes.

In 1954, Goodman and Kruskal wrote a classical work dis-
cussing several issues on measures of association for con-
tingency tables [18]. We choose to report the Goodman
and Kruskal's gamma [19] since it is symmetric and nor-
malized between -1 and 1. The gamma measure (G) is a 2
× 3 extension of the known 2 × 2 Yule's Q:

G = (p - q)/(p + q)  (1)

where p = Xi-j(Nij - Xij + Nj-i - Xj-i) + Xij(Nj-i - Xj-i) and q = Xj-

i(Nij - Xij + Ni-j - Xi-j) + Xij(Ni-j - Xi-j). G values near 1 indicate
that the property described by the term(s) in focus have an
important role in the biological phenomena studied. G
values below or near zero have no relevant biological
interpretation since they mean the absence of association
with differential gene expression.

Probabilistic model and bayesian inference
Focussing on a given term(s) and using the same notation
from the previous sub-section, let xi-j be the number of dif-
ferentially expressed genes observed that are i-exclusive,
ni-j be the total number of observed genes that are i-exclu-
sive, xij is the number of observed differentially expressed
genes belonging to the i and j intersection, nij is the total
number of observed genes belonging to the i and j inter-
section, xj-i is the number of differentially expressed genes
observed that are not related to the term i and nj-i is the
total number of genes that are not related to the term i.
Note that N. ≥ n. ≥ x. for any sub-index, represented by the
"dot".

It is possible to realize that x.|X.,N.,n. follows a hypergeo-
metric distribution [20]:
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We will omit N. and n. from the notation since they are
always known numbers. Using a non-informative uni-
form as the a priori distribution for X. and the hypergeo-
metric likelihood above, it is possible to show that the a
posteriori distribution of (X. - x.)|x. is a BetaBinomial dis-
tribution [20]:

where B is the beta special function.

Therefore, the 2 × 3 contingency table can be rewritten as:

The degree of association determined in Eq.1 is now a
function of the random variables Xi-j, Xij and Xj-i, described
by the BetaBinomial a posteriori probability functions.

In computational terms, it means that several independ-
ent 2 × 3 contingency tables are built using random vari-
ates drawn according to their respective BetaBinomial
probability distributions. The empirical probability distri-
bution of the association level is obtained by applying
Eq.1 to each of these random contingency tables. The sig-
nificance analysis and the construction of credibility inter-
vals ("errorbars") are based on this empirical distribution
of G.

We have used 90% credibility intervals as default, but this
parameter can be easily adjusted in the source-code. The
credibility intervals are defined as previously described
[21].

Assessing the significance of association measurements
To evaluate the significance of a measured statistical asso-
ciation, we have determined the probability P = Pr(GM ≥
Gobs), where Gobs is the observed association and GM is the
association obtained from MonteCarlo simulations. This
simulation process accounts for the ontology's structure
since it is influenced by the connectivity of the ontology
graph.

The simulation consists in uniformly sampling lists from
the observed genes. In each simulation round, this ran-
dom list of length M is considered as the list of differen-
tially expressed genes. Ideally, the number of genes used
in each round considers that there is an intrinsic error
when one defines a gene as differentially expressed. Keep-
ing the length constant M = ni-j + nij + nj-i could be an unre-
alistic approximation, due to the possibility of a global
false-calling rate. We used a generic and heuristic sam-
pling rule considering this length as M ~ Poisson(ni-j + nij

+ nj-i). It is possible to incorporate other rules to define the
length M in BayGO source-code. The rule can be derived
from the particular method used for the identification of
differentially expressed genes.

The definition of P is similar to the Frequentist p-value if
Gobs is a real number and M is kept constant. It is known
that, in this configuration, simulations tend to agree with
the theoretical results from Fisher-like methods. However,
if we consider that not all the genes were observed and
thus, the association is also a random variable, then the
Frequentist p-value is not defined. On the other hand, the
Bayesian analog P is still valid since the event {GM ≥ G} is
well defined. This probability is calculated in the BayGO
software by counting the number of times that this event
occurs during the MonteCarlo rounds. Note that, in each
round, a new G value is calculated based on random vari-
ates drawn according to the BetaBinomial model
described in the previous sub-section.

BayGO source-code
BayGO source-code is provided in three versions: Linux,
Windows® and as a package for building a custom web-
based interface. The core of BayGO is written as R lan-
guage scripts [22]. The package for web-based interfaces is
a set of Perl, HTML and R source-codes.

The main source-code of BayGO receives as inputs: an R
binary "database" file, a list of differentially expressed
genes in a plain-text file, a list of genes that were not dif-
ferentially expressed and the number of simulation
rounds desired for the significance and error-bar determi-
nation. The R binary "database" file keeps the organism
information: an ontology table, containing all available
ontology terms and descriptions, and an ontology-to-gene
table, listing all the genes classified under each term. This
file is built only once by an auxiliary script and it is used
in several analysis. To build this "database" it is necessary
to provide as inputs: a gene-to-ontology plain-text file
(similar to the GO .goa files, for example) and an ontol-
ogy description plain-text file. Detailed examples are pro-
vided in the BayGO user-manual available at BayGO
Home-page [23].

BayGO assumes that the ontology-to-gene or gene-to-
ontology tables are adequately built by the user, consider-
ing the different levels of abstraction of the GO graph
desired. These issues include taking into account the hier-
archical structure when considering father/sons ontology
terms and defining an arbitrary truncation level of the
graph [17].

The Linux version was designed to be easily incorporated
into pre-existing tools or pipelines. There are several soft-
ware packages that deal with the ontology term enrich-
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ment problem [17] and many of them are integrated with
relevant databases, creating a knowledge discovery envi-
ronment for the biologist user. We did not try to surpass
these efforts and therefore, we provide a software that
receives and exports simple plain-text files and is operated
in a non-interactive form. These features allow BayGO to
be incorporated as a mathematical module in complex
and complete pipelines. An example of an OpenSource
software which has a powerful GUI is Clutree [24].

The version for Windows® was designed to be extremely
user-friendly. It does not require any programming skills
and it is controlled interactively by menus. The functions
to analyze the data and build R binary "database" files are
integrated in the windows-style menus.

Finally, the web-based version was designed to allow the
researchers to establish their own local web-tool for the
ontology term enrichment analysis. It is easy to realize
that the organisms supported by the web-based tools are
restricted to those with a vast research community such as
human, mouse, yeast and so on. This version will enable
research communities focussed on other organisms to set-
tle a useful resource, assuming a simple infrastructure
such as a web-server with PERL/CGI allowed.

Microarray experiments
To test the BayGO software, we used microarray data from
the heat shock response in bacteria. Since this stress trig-
gers a conserved biological response from a system-level
viewpoint, we believe that meaningful results could show
BayGO usefulness. Therefore, we analyzed the transcrip-
tional response of the phytopathogenic bacterium Xylella
fastidiosa exposed to a temperature shift-up from 29°C to
40°C for 25 minutes.

The complete dataset and all the MIAME-required details
regarding the construction, hybridization, image acquisi-
tion and expression ratio normalization are publicly avail-
able at GEO database [25,26] under the accession number
GSE3044. The microarray slides and data were obtained
according to [27]. The expression ratio between the 40°C
and 29°C (control) conditions was normalized using the
LOWESS fitting exactly as in [27].

Unreliable spots, presenting intensities too similar to the
local background or saturated were filtered out. Spots pre-
senting mean signal intensity below the mean back-
ground plus 2 times its standard deviation in Cy3 and Cy5
simultaneously were eliminated from subsequent analy-
sis. Saturated spots were also discarded. The HTself
method [28] was used to define the differentially
expressed and non differentially expressed genes. Briefly,
the HTself method uses self-self experiments (cDNA from
the 29°C control condition labeled independently with

both Cy3 and Cy5 fluorescent dye and hybridized simul-
taneously in the same microarray slide) to derive an inten-
sity-dependent cutoff curve. We used credibility intervals
of 0.99, window size of 1.0 and window step of 0.2. It is
assumed that genes found consistently outside this cutoff
curve are differentially expressed. A gene was classified as
differentially expressed or not if it has at least 5 measured
replicates and 80% of the replicates are outside or inside
the intensity-dependent cutoff curves, respectively.

The pathway information about the bacterium Xylella fas-
tidiosa was obtained directly from the KEGG web-site
[29,4] and the Gene Ontology information from the
GOA@EBI web-site [5,30].

We considered an ontology term as significantly enriched
if it presents a p-value smaller than 0.05. To reach the con-
clusions using the Frequentist method, we adopted the
default parameters in GeneMerge [8] software, including
Bonferroni correction and using the arrayed genes as the
reference set. To reach the conclusions using our Bayesian
method, we used the whole-genome as the reference set,
as required by our proposed model.

Results and discussion
Measurement of statistical association in addition to 
statistical significance
The measurement of association is an extensively studied
issue in statistics [18,19,31]. The usual meaning of "asso-
ciation" refers to coefficients that measure the strength of
relationships; they are used to measure the relationship
when there is a dichotomy. Two other kinds of association
measurements are the well-known "correlation", which is
used when both variables are intervals, and the "reliabil-
ity", which is used to analyze a variable with itself. The
concept of statistical association is different from statisti-
cal significance. Measures of significance compare the
strength of an observed relationship with one that would
be expected by chance, if one performs random sampling.
The significance analysis is influenced not only by the
strength of a relationship but also by other parameters
such as the sample size or the sampling procedure. It is
possible to have a relationship that presents a non-signif-
icant strong association or a significant weak relationship.
Significance is relevant only when one has a random sam-
ple whereas association is always relevant to draw conclu-
sions. Since significance and association are not
equivalent, researchers may report both measures when
discussing their findings. The use of association measure-
ments for the problem of ontology term enrichment in
bioinformatics has not been explored yet; the predomi-
nance of significance approaches is evident.

We propose to measure the statistical association in the
context of the ontology term enrichment problem using
Page 4 of 11
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the Goodman and Kruskal's gamma factor G [19] (Eq.1).
G is a symmetric index, normalized between -1 and 1. The
interpretation of this measure is that G values near 1 indi-
cate strong positive association. The positive association
of a given term with differential gene expression means
that the property described by the ontology term on focus
can be involved in the biological phenomenon studied.
Negative and zero association are biologically meaning-
less in this context. The zero value means that there is no
statistical association and the negative values indicate
association with non-differential gene expression.

It is not possible to define in advance a cutoff value above
which one can consider an ontology term as presenting a
relevant association. On the other hand, there are some
traditionally used cutoffs for significance such as 0.01 or
0.05. It is intuitive to rely on a conclusion showing signif-
icance of 0.05, but it is difficult to foresee the value of
association that represents a strong association in a gen-
eral context (the same argument holds for correlation
measurements). Depending on the application, the value
of 0.95 can represent a strong association (or correlation);
in other context, the same value can be an insufficient evi-
dence of association between two facts. Ideally, sorting
ontology terms by their G values and performing external
independent biological assays could provide the associa-
tion cutoffs. In order to evaluate the significance of the
obtained associations, we calculated the probability P =
Pr(GM ≥ G), where Gobs is the observed association and GM
is a random variable obtained by MonteCarlo simulation
(see Implementation section for details).

Bayesian model accounting for non-observed genes
In a typical microarray dataset, a gene could not be
detected for several reasons: it was not spotted on the
array due to a selection procedure; it did not meet the
quality standards on intensity, integrity, technical repro-
ducibility, etc. If we cannot observe all the genes, the
number of genes differentially expressed observed is an
estimate and, therefore, we need an inferential frame-
work.

The advantages and disadvantages of the Bayesian statis-
tics over the Frequentist approach belong to an old and
endless debate in statistics. Some advantages of the Baye-
sian approach for microarray analysis are well discussed
elsewhere [32]. In the problem of ontology term enrich-
ment, the Bayesian framework allows the incorporation of
prior information regarding the known size of each set of
genes associated to an ontology term.

If we consider that all genes associated to a certain term
were observed, the association measure G is a real
number. In addition, if the significance analysis is made
upon random lists of differentially expressed genes with

the same length of the observed differentially expressed
gene list, the probability P = Pr(GM ≥ G) is equivalent to
the usual Frequentist p-value. These assumptions are tac-
itly used when one performs all the Fisher-like tests [17].

However, if one cannot observe all the genes associated to
a term, then the association should be treated as a random
variable whose probability distribution reflects our igno-
rance about the true value. Our ignorance becomes
smaller as we observe more genes. Moreover, we can
establish credibility intervals ("error-bars") for the degree
of association, similarly as discussed previously in a SAGE
analysis context [21]. The Bayesian analogue for the p-
value, P = Pr(GM ≥ Gobs), is still valid even if both GM and
Gobs are random variables, whereas the Frequentist p-value
is not defined in this case.

It is possible to show that, under certain conditions, once
one observes a portion of the differentially expressed
genes related to a given ontology term, the unknown
remainder portion is described by a BetaBinomial proba-
bility distribution [20]. This result holds under a non-
informative uniform a priori (see Implementation section
for mathematical details) given the number of differen-
tially and non differentially expressed genes that were
observed and the number of genes known to be related to
the ontology term. In other words, as it is performed in an
electoral process, we estimate the behavior of the finite
population of genes related to an ontology term using a
sample of it.

Examples of the BayGO usefulness
To show the usefulness of the BayGO software, we devise
some illustrative examples of situations that one can face
when analyzing microarray data. One of the examples
shows the usefulness of the statistical association and the
other examples show the Bayesian feature of considering
the sampling effect.

To highlight the difference between our Bayesian method
and one that does not account for the sampling effect, we
have arbitrarily chosen the "hypergeometric" test to repre-
sent the Frequentist Fisher-like approaches [8,17].

We will consider a fictitious test-organism with character-
istics compatible with several real organisms. Suppose
that this test-organism has 4000 genes, classified into sev-
eral categories that are described by ontology terms. Let us
focus on an arbitrary class and list all the genes related to
a term i that describes this class. The size of the set i is 30,
and only 5 genes are exclusively related to the property
described by the term i. Let j be the list of genes that have
other terms different from i related to them. The size of
this set j is 3975. The set i-j contains the genes that are
exclusively related to the ontology term i while the set j-i
Page 5 of 11
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contains the genes that are not related to the ontology
term i. The set ij contains the genes that are not i exclusive.
Finally, suppose that we carried out microarray experi-
ments comprising all the known genes.

The gene-to-ontology table for this test-organism, the
complete Bayesian and Frequentist results and the corre-
sponding gene lists used in the following illustrative
examples are available as Additional File 1.

In the first example, suppose that all the 4000 genes are
observable and the microarray experiment yielded 400
differentially expressed genes, distributed as follows:

In this 1st scenario, there is no qualitative difference
between the two approaches. The p-value obtained by the
Frequentist test is <10-13, indicating a significant enrich-
ment of the term i. Accordingly, using the Goodman and
Kruskal's gamma (Eq.1) to measure the statistical associa-
tion between the term i and differential expression, one
obtains Gobs = 0.899, a value close to 1 which means strong
association. Moreover, since all available genes were
observed, G is known without uncertainty and its 90%
credibility interval [0.899; 0.899] has zero length. The
MonteCarlo simulations with 1000 rounds indicate sig-
nificant association since P = 0.

Suppose that, for the same dataset, the result from half of
the genes related to term i was not measured by typical
reasons such as: it did not meet quality standards on
intensity, integrity, technical reproducibility, and so on.
Now the contingency table is:

In this 2nd scenario, both approaches are still indicating a
significant enrichment of the term i. However, the statisti-
cal association measured is now a random variable, since
the data is a sample from the complete scenario. The Fre-
quentist test's p-value is 3.5·10-4. The counts for all i-
related genes were diminished proportionally (e.g.
approximately half), thus, the measured association
remains the same Gobs = 0.899. Nevertheless, there is now
an uncertainty related to the measured statistical associa-
tion and its 90% credibility interval is [0.829;0.937].
Despite the uncertainty, the association measured is much
more probable than the association obtained from 1000

uniformly generated random lists of differentially
expressed genes, since P = 0.

Now, suppose that only one fifth of the i related genes had
their expression status defined. The contingency table is:

In this 3rd scenario, the two approaches clearly disagree.
The Frequentist test's p-value is 0.32 indicating no signifi-
cant enrichment. The association measure gives the same
result Gobs = 0.899 with the 90% credibility interval
[0.724;0.948]. The significance of the obtained associa-
tion is P = 0.04, indicating that the enrichment could be
accepted in face of the usual 0.05 cutoff.

Intuitively, we believe that finding an abundance of 4/400
for the differentially expressed genes is relevant when
comparing with the total abundance of 6/3976 for all
genes. Therefore, we believe that the association measure-
ment is capturing the essential feature of the data, even if
subjected to uncertainty.

In the following, we will consider another extreme exam-
ple: when the observed genes are highly biased. Toward
this aim, suppose that the test-organism has a gene anno-
tation slightly different from the one used above, allocat-
ing the same 30 genes in a different way among the
ontology terms. In the previous example, we emphasized
the consistent pattern of the association measurement if
the observed sample is "equilibrated" over the possible
results. Now, using the same test-organism and the same
microarray setup, suppose that we could observe all avail-
able genes, yielding the following contingency table:

It is clear that, from both Frequentist test and Bayesian
model, there is no significant enrichment of the term i,
since the p-value is 0.17, Gobs = 0.282 without uncertainty
and P = 0.11.

Suppose that one cannot observe the result from the genes
related exclusively to the term i. Let us consider, for
instance, that the 25 i-exclusive genes were not spotted on
the microarray slide due to gene selection. Therefore, the
contingency table is:

Differentially expressed

Non differentially expressed         

i j ij j i- −
3 17 380

2 8 3590

Differentially expressed

Non differentially expressed         

i j ij j i- −
1 9 380

1 4 3590

Differentially expressed

Non differentially expressed         

i j ij j i- −
0 4 380

0 2 3590

Differentially expressed

Non differentially expressed         

i j ij j i- −
0 5 395

25 0 3575
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In this scenario, one is led to believe that there is a signif-
icant enrichment, since all spotted genes related to the
term i were found to be differentially expressed. In fact,
the p-value is <10-5 and the association is very strong with
Gobs = 1. However, the 90% credibility interval of the asso-
ciation measurement is large [0.382;1.00] and the signifi-
cance is low with P = 0.34.

We believe that this example shows the importance of
considering the sampling effect in the significance or in
the association result, manifested by the large "error-bar".

Application to real microarray data
To validate the BayGO approach, we used the microarray
experiment data corresponding to a relatively well-charac-
terized biological phenomenon: the heat shock response
in bacteria. The high temperature stress is an aggressive
environmental perturbation for bacteria, triggering system
level changes in their transcriptional program. Although
this stress response has many peculiarities depending on
the particular bacteria studied, there are known conserved
responses that can guide the validation of our model.

In this sense, we analyzed the response of the phytopath-
ogenic bacterium Xylella fastidiosa to a temperature shift-
up from 29°C to 40°C for 25 minutes, using DNA micro-
arrays fully described in the GEO database under the
accession number GSE3044. To define the up-regulated
and down-regulated genes, as well the genes whose
expression was unchanged, we used the HTself method
[28] (see more details in the Implementation section).

In this example, we will focus on the up-regulated genes
induced by the temperature stress; therefore, the non-
induced genes are the down-regulated plus the non-per-
turbed genes. It is not our aim in this work to explore the
particular biological implications of this dataset. The
complete study of heat shock response comprising several
time-points, along with the biological rationale and con-
clusions will appear elsewhere (T. Koide, R.Z.N. Vêncio
and S.L.Gomes, submitted).

We avoid making extensive comparisons with the meth-
ods available since there are several combinations of ways
in which a term enrichment analysis can be performed
[17]. A given method can yield a different qualitative
result depending on the multiple-test correction used,
depending on several free parameters or depending on the
input ontology (for example, GO analysis can be per-
formed considering or not certain connections of the

graph). Furthermore, we believe that presently, there is no
reasonable independent methodology of biological vali-
dation to confront the system-level biological conclusions
obtained with different softwares.

We chose to present the BayGO results along with the
results obtained by GeneMerge [8]. GeneMerge is one of
the few methods available that accepts arbitrary ontolo-
gies and supports arbitrary organisms, not being limited
to the most studied ones [17]. Note, however, that this is
an illustrative comparison.

The first analysis is relative to KEGG pathways. Additional
File 2 contains the complete output from the Bayesian and
Frequentist softwares for KEGG terms analysis. The path-
way terms significantly enriched (p-value < 0.05) accord-
ing to the Frequentist methods are: Protein folding and
associated processing and Folding, Sorting and Degradation.
The terms enriched (P < 0.05) according to our Bayesian
methods are: Protein folding and associated processing, Fold-
ing, Sorting and Degradation and Genetic Information
Processing. These results are completely compatible with
what is known about the bacterial heat shock response
[33]. It seems that BayGO correctly captured the KEGG
term Genetic Information Processing since it is known that
bacteria facing such stress change their gene expression
program in a broad system-level sense.

The second analysis is relative to Gene Ontology. Addi-
tional File 2 contains the outputs from the BayGO and
GeneMerge softwares for GO terms analysis. The ontology
terms significantly enriched (p-value < 0.05) according to
the Frequentist method are: Protein folding (GO:0006457),
Unfolded protein binding (GO:0051082), Response to
unfolded protein (GO:0006986) and Protein binding
(GO:0005515). The terms enriched according to our Baye-
sian method (P < 0.05) compose a more numerous set,
including the 4 terms found by the Frequentist method.
Table 1 shows these significant terms.

The biological insight provided by the Bayesian method
seems to be richer when one is trying to elaborate a sys-
tem-level picture of the transcriptional disturbance caused
by heat shock. For instance, BayGO was able to highlight
the term HslUV protease activity (GO:0009377) and Heat
shock protein binding (GO:0031072) that were not high-
lighted by the Frequentist analysis. Both activities are clas-
sically known to be involved in the heat shock response
[33].

We restricted our illustrative comparisons to the signifi-
cance analysis since there is no similar software that
approaches the statistical association issue presented in
this work. We believe that the use of association measure-
ments can help the biologists in their microarray analysis.

Differentially expressed

Non differentially expressed         

i j ij j i- −
0 5 395

0 0 3575
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For instance, the term Chaperone activator activity
(GO:0030189) presents a strong association level (Gobs =
1) but not a high significance (P < 0.17) and the chaper-
one molecules are known to be related to the heat shock
response. Results for all terms are available in Additional
File 2.

It is important to note that the comparison performed in
this section should be carefully considered since there are
many possible variations for the Frequentist analysis [17].
However, we believe that these experimental results show
the usefulness of BayGO software.

BayGO source-code
Our source-code is provided as R language [22] scripts in
three versions: Linux, Windows. and as a package for
building custom web-based interface locally. The Linux
version receives its parameters non-interactively by com-
mand-line arguments and thus, it can be easily incorpo-
rated into pre-existing pipelines or web-based tools. The
version for Windows is a user-friendly program that is
controlled interactively by menus, without the necessity
of programming, being more appropriate for end-users.
Finally, the web-based version is a set of R, Perl and HTML
source-codes that allows one to build his own web-based
tool locally, focussing on the organisms of interest.

Using the web-based version, we have created a useful
web-tool that supports organisms of interest to our local
research community [23]. The ever-growing list of sup-
ported organisms includes some of those that are
neglected by the most used similar tools, such as Xylella
fastidiosa, Xanthomonas citri, Blastocladiella emersonii, etc.

Although BayGO was designed based on Gene Ontology
terms, the software can also be used with other classifica-
tion designs. For this, the user has to provide a gene-to-
ontology hash table for all known genes and not only for
those spotted in the microarray slide.

Caveats, limitations and recommendations
The approach of finding enriched ontology terms in
microarray data has several known intrinsic limitations.
In our opinion, the most severe limitations are: (i) the
practical difficulty in the experimental validation of the
conclusions derived from such methods, since it is diffi-
cult to manipulate a large set of genes to observe which
system-level deductions are real or methods' artifacts; (ii)
the large quantity of "free parameters" that can be
changed in routinely use of these methods, from the hier-
archical structure of ontologies limited by the user to the
choice of cutoff p-values; (iii) the tacit assumption that a
given function, pathway, etc., is "important" or not solely
based on numerical aspects (number of genes, statistical
association, etc) ignoring the qualitative aspects involved
(few differentially expressed genes in a pathway might be
sufficient to trigger system-level responses); and (iv) the
results rely heavily on gene annotation provided for the
studied organism.

It is likely that, even for well studied prokaryotes, many
genes have no known function and others are likely to be
involved in different processes and therefore, they are
associated to multiple presently unassigned ontology
terms. A potential implication is that the contingency
tables probably hold more uncertainty than it is taken
into account by the present models. There are some efforts

Table 1: Gene Ontology terms considered significantly enriched (P < 0.05) by the Bayesian approach. The GO terms marked with an 
asterisk are all those considered significant (p-value < 0.05) by the Frequentist approach. G is the gamma measure of statistical 
association and G90% is its 90% credibility interval ("error-bar")

ID Description P G G90%

GO:0006986 response to unfolded protein * 0.000 1.00 [0.95; 1.00]
GO:0006457 protein folding * 0.000 0.86 [0.76; 0.91]
GO:0051082 unfolded protein binding * 0.000 0.83 [0.74; 0.88]
GO:0004252 serine-type endopeptidase activity 0.005 0.85 [0.69; 0.94]
GO:0004222 metalloendopeptidase activity 0.005 0.72 [0.56; 0.84]
GO:0005515 protein binding * 0.010 0.80 [0.65; 0.89]
GO:0031072 heat shock protein binding 0.015 0.81 [0.78; 0.84]
GO:0008233 peptidase activity 0.015 0.63 [0.50; 0.81]
GO:0006508 proteolysis and peptidolysis 0.020 0.59 [0.41; 0.73]
GO:0016702 oxidoreductase activity, acting on single donors 0.020 0.81 [0.78; 0.83]
GO:0004176 ATP-dependent peptidase activity 0.025 1.00 [0.80; 1.00]
GO:0009377 HslUV protease activity 0.025 1.00 [1.00; 1.00]
GO:0030163 protein catabolism 0.025 0.81 [0.79; 0.84]
GO:0004295 trypsin activity 0.030 1.00 [1.00; 1.00]
GO:0015969 guanosine tetraphosphate metabolism 0.030 1.00 [1.00; 1.00]
GO:0019836 hemolysis 0.030 1.00 [1.00; 1.00]
GO:0006886 intracellular protein transport 0.045 0.66 [0.62; 0.70]
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in trying to quantify the effects of mis-annotation or to
establish some form of probabilistic gene annotation,
including Bayesian models [34,35]. Future directions of
works in the ontology term enrichment problem should
include such gene annotation uncertainties.

The ontology term enrichment problem is not restricted
to differential gene expression analysis or to microarray
derived data. The current models, including the one
implemented in BayGO, are capable of analysing the
enrichment relative to other dichotomous properties such
as "belonging to a particular gene cluster" vs. "not belong-
ing", in clustering analysis [24]; "it is expressed (ON)" vs.
"it is not expressed (OFF)", in gene transcription analysis;
"narrowly expressed transcripts" vs. "prevalently
expressed transcripts" [36]; and so on.

Particularly for BayGO, the dichotomous properties are
defined in the two rows of the contingency table. The sig-
nificance of the statistical association is measured relative
to the first row, however, since gamma (Eq.1) is symmet-
ric around zero, flipping rows order will yield the "oppo-
site" analysis. In the illustration presented in the section
Application to real microarray data, we chose to analyze the
induced genes after temperature stress, defining the
dichotomous property as "up-regulated" vs. "not up-regu-
lated" (this class includes not differentially expressed and
down-regulated genes). Conversely, one may want to
focus on the repressed genes defining the contigency
table's rows as "down-regulated" vs. "not down-regu-
lated". Another possibility is to analyze "perturbed" vs
"no change", independent of the direction of the change.

Generally, the methods to find enriched terms work using
nominal lists of genes without knowledge of how the list
was obtained. The means by which these gene lists were
obtained define the interpretation and meaning of the
result. It is important to note that the method used to
obtain the differentially expressed genes (or any other
property being studied) has an important impact on the
enrichment analysis since they determine the gene list that
is inputed. In this work, we analysed our microarray data
using our recently published HTself method [28] but we
provide the same analysis using widely used approaches
as well at the Supplemental material [23].

BayGO was designed to be a mathematical module and
therefore, it has a limited interactive potential. For
instance, it does not provide a graphical user interface
(GUI) that allows the user to browse his/her results. These
features are complex and are beyond BayGO's scope. It
was designed to be incorporated into pre-existing software
with elaborated GUI front-end. One good option of such
front-end is the OpenSource software Clutree [24]. One of

the future directions for BayGO evolution could be its
incorporation on available GUIs.

Conclusion
When dealing with the system-level problem of finding
enriched terms from microarray data, most of the soft-
wares available use only the significance analysis. In this
work, we have introduced the use of a measure of statisti-
cal association between ontology terms and differentially
expressed genes, in addition to the common significance
analysis. We elaborated a Bayesian statistical model for
the ontology term enrichment problem that incorporates
information about the composition of the ontology by
taking into account genes that were not observed in the
microarray data. The examples given in this work aim at
making the investigators aware of the necessity of consid-
ering the sampling problem when drawing system-level
conclusions.

The BayGO software can be used with generic gene-to-
ontology tables and not only with GO classification. The
web-tool is implemented for a set of organisms with par-
ticular interest to our local research community, but we
made available the source-code that allows one to build
custom web-tools for other organisms. We also made
available an R source-code and a web-based tool that cal-
culates these association measurements and their signifi-
cances.

Finally, we would like to highlight that the estimation of
statistical association and statistical significance are not
equivalent procedures. We believe that the use of statisti-
cal association should be more explored in bioinformat-
ics. Statistical association is an established tool in
statistics, widely used in other research fields since it
allows the visualization of relationships inside the data
that are not considered when using only significance anal-
ysis

Availability and requirements
• Project name: BayGO

• Project home page: http://blasto.iq.usp.br/~tkoide/
BayGO

• Operating system(s): Platform independent (Linux,
Windows, Mac OS X and web-service for supported organ-
isms)

• Programming language: R.

• Other requirements: to build a local version of the web-
service it is necessary to have Apache with CGI allowed
and Perl.
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• License: under the GNU General Public License
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Zipped file containing all the data relative to the artificial test-organism. 
It contains: the gene-to-GO table, the complete genome, the input data for 
creating the examples of "Examples of the BayGO usefulness" section and 
all the outputs/results obtained for those examples.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-86-S1.zip]

Additional File 2
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"Application to real microarray data" section.
Click here for file
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Page 10 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-7-86-S1.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-7-86-S2.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15896686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15896686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15720266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15720266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15720266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592173
http://www.ebi.ac.uk/GOA/proteomes.html
http://www.ebi.ac.uk/GOA/proteomes.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764878
http://www.geneontology.org/GO.tools.microarray.shtml
http://www.geneontology.org/GO.tools.microarray.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11829497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11829497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12724301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12724301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15350198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15350198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15333457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15333457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12697067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12697067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668232
http://www.R-project.org
http://blasto.iq.usp.br/~tkoide/BayGO
http://blasto.iq.usp.br/~tkoide/BayGO
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608262
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15292146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15292146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15292146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16303752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16303752
http://www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960829


BMC Bioinformatics 2006, 7:86 http://www.biomedcentral.com/1471-2105/7/86
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

32. Yang D, Zakharkin SO, Page GP, Brand JP, Edwards JW, Bartolucci
AA, Allison DB: Applications of Bayesian statistical methods in
microarray data analysis.  Am J Pharmacogenomics 2004, 4:53-62.

33. Yura T, Nagai H, Mori H: Regulation of the heat-shock response
in bacteria.  Annu Rev Microbiol 1993, 47:321-350.

34. Levy ED, Ouzounis CA, Gilks WR, Audit B: Probabilistic annota-
tion of protein sequences based on functional classifications.
BMC Bioinformatics 2005, 6:302.

35. Engelhardt BE, Jordan MI, Muratore KE, Brenner SE: Protein Molec-
ular Function Prediction by Bayesian Phylogenomics.  PLoS
Comput Biol 2005, 1:e45.

36. Zhang J, Zhang L, Coombes KR: Gene sequence signatures
revealed by mining the UniGene affiliation network.  Bioinfor-
matics 2005, 22:385-391.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14987122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14987122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7504905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7504905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16354297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16354297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16217548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16217548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339286
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Measure of statistical association
	Probabilistic model and bayesian inference
	Assessing the significance of association measurements
	BayGO source-code
	Microarray experiments

	Results and discussion
	Measurement of statistical association in addition to statistical significance
	Bayesian model accounting for non-observed genes
	Examples of the BayGO usefulness
	Application to real microarray data
	BayGO source-code
	Caveats, limitations and recommendations

	Conclusion
	Availability and requirements
	List of abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

