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210 COMPUTATIONAL GENOMICS

2. Biology and Bioinformatics Background

The SAGE method, described by Velculescu et al. (1995), is based on
the isolation of unique sequence tags from individual transcripts. SAGE
counts transcripts by sequencing a_short 14-bp tag at the gene’s 3’ end
adjacent to the last restriction enzyme site, usually Nlalll. The 4 bases of
the 3’-most Nialll restriction site (CATG) plus the following 10 variable
bases define the transcript tag. After the concatenation of tags into long
DNA molecules, sequencing of these concatemer clones allows quantifi-
cation and identification of cellular transcripts. When dealing with SAGE
data, it is important to bear in mind that this technology yields transcript
counts, expressed as a fraction of the total amount of transcripts counted,
and not results relative to another experiment or a particular housekeep-
ing gene, such as in hybridization-based techniques. This advantage avoids
error-prone normalization between experiments. Another advantage is that
it determines expression levels directly from RNA samples and it is not
necessary to have a gene-specific fragment of DNA arrayed to assay each
gene. That is why SAGE is called an open system, justifying the analogy
;Ia(l)l:)l;)( of the functional genomics” (SAGE2000 Conference, September

Transctipt tags were extracted from the automatic sequencing machines
output files, the chromatograms, using specific softwares. The steps are as
follows (Lash et al., 2000):

1 locate the Nlalll sites (i.e., CATG “punctuation signals”) within the ditag
concatemer;

2 extract ditags of 20-26 length bases, which fall between these sites;

3 remove repeat occurrences of ditags, including repeat occurrences in the
reverse-complemented orientation;

4 define tags as the end-most 10 bases of each ditag, reverse-
complementing the right-handed tag;

5 remove tags corresponding to linkers (e.g, TCCCCGTACA and
TCCCTATTAA), as well as those with unspecified bases;

6 for each tag, count its number of occurrences.

A relevant problem in Bioinformatics is to assign the observed tags to
its correspondent gene. Tag-to-gene mapping is accomplished by first ori-
entating GenBank sequences using poly-adenylation signal (ATTAAA or
AATAAA), poly-adenylation tail (minimum of 8 A’s) and orientation an-
notation (3” or 5°). Tags for genes are defined from the 10-base sequence
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directly 3* adjacent to the 3’-most Nlalll site (CATG), and then linked
to an UniGene cluster identifier. UniGene is a system for automatically
partitioning GeneBank sequences, including ESTs, into a non-redundant
set of gene-oriented clusters. Each UniGene cluster theoretically contains
sequences that represent a unique gene (Schuler, 1997). When extracting
tags, 5 arbitrary reliability *classes” are defined for tag-to-UniGene as-
signment, following the reliability order:

1 derived from well-characterized mRNA’s ¢cDNA sequences from
GeneBank;

2 tags extracted from EST sequences with a polyadenylation signal and/or
polyadenylation tail and annotated as 3* sequences;

3 derived from EST sequences with a polyadenylation signal and/or
polyadenylation tail, but without a 3* or 5° annotation;

4 from EST sequences with a polyadenylation signal and/or polyadenyla-
tion tail, but annotated as 5* orientation;

5 from EST sequences without a polyadenylation signal or tail but
annotated as having a 3’ orientation.

For each tag, two other quality parameters are calculated: (i) the gene-
to-tag assignment frequency (how many different genes, from the total of
unique genes in the library, the tag is the best-match tag) and (ii) the tag-
to-gene assignment frequency (how many different tags, from the total of
unique tags in the library, the gene is the best-match gene).

The Cancer Genome Anatomy Project SAGE Project made available
new Bioinformatics tools taking into account measurable reliability in tag-
to-gene matching. This is accomplished in three major steps: (i) a confident
tag list was distilled from ~6.8 million experimentally observed SAGE
tags; (i) virtual SAGE tags (predicted from cDNA transcript sequences)
were obtained, parsed into databases reflecting the origin of the transcript
sequence and ranked according to it; and (iii) custom programs were cre-
ated to sift through the databases, choose the best tag-to-gene match, and
present results online. Alternative transcripts, redundant tags, and internal
priming were also considered for tag selection. This is the SAGE Genie
interface (http://cgap.nci.nih.gov/SAGE) (Boon et al., 2002).

Ideally, these tags are long enough to be unique to one transcript, and
the abundance of a given tag is assumed to be proportional to the expres-
sion level of that transcript in the original pool of RNA. However, SAGE
is a sampling method: some transcripts present in low abundance may be
missing, and the number of copies of others may not accurately reflect
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their true abundance in cells due to selection bias (Margulies ez al., 2001).
In addition, there are errors in sequencing, possibility of non-unique tags
or transcripts that produce no tag. A small number of transcripts are ex-
pected to lack the Nlalll enzyme anchoring site and therefore would be
missed in the analysis. Transcripts that failed to be represented due to the
lack of restriction enzyme anchoring site are estimated to be as low as
1% (Boon et al., 2002). It is interesting to note that about 30% of the full
length transcripts have a repetitive sequence inside its sequence. SAGE
tags that fall inside repetitive elements will be counted many times for
different transcripts and their frequency will be very high, compromising
the gene-to-tag assignment (see web-Fig. 1). In the mouse SAGE web-site
(http://fmouse.biomed.cas.cz/sage/), for example, the tags with reliable as-
sociations to 12 or more UniGene clusters were labeled as “repetitive/low-
complexity” to be easily distinguished. These problems, in time, may be
disregarded by the increasing number of SAGE tags collected for future
SAGE screens, and the use of longer SAGE tags or different anchoring
enzymes.

3. Estimation

The objective of the Estimation process is to obtain numerical values for
the unknown quantities in a sample or a population. The estimation is,
along with hypothesis testing, a fundamental task of Statistics and is
divided into Point Estimation and Estimation by Interval.

Point Estimation attributes the best possible scientific guess for a nu-
merical unknown quantity. The Frequentist approach for Statistics claims
that the “best” estimators have certain properties such as being non-biased,
for example. The Bayesian radically disagrees since estimators are always
biased by the a priori knowledge.

Estimation by Interval is expected to find numerical intervals that
contain the unknown quantity, attaching some probability to this fact. An
interval is also viewed with a very different interpretations depending if
it is a Frequentist or a Bayesian approach. In the Frequentist view, obtai-
ning an a% confidence interval means just the application of a calcula-
tion procedure to our data that yields a numerical interval. This procedure
claims that the calculated intervals, applied to virtual data, should con-
tain the true parameter’s value in at least &% of the times that one uses it.
This virtual data is assumed to be created by the same underlying proba-
bility density function (pdf) that created the observed data. This does not
mean that the probability that the true value is contained in the interval
is a. In the Frequentist framework, the true value is a number and not
a random variable, not allowing such a probabilistic assertion. However,

e
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this kind of desired assertion is possible using a Bayesian framework. The
Bayesians do not believe in the “data that could be observed but was not”
(virtual data) concept and base their conclusions on the parameter’s a
posteriori probability density function. The probability that a parameter’s
unknown value is inside an interval can be calculated for any numerical
interval, To match the intuitive notion of “error-bar”, one calculates the
smaller interval around posteriori pdf maximum that integrates o proba-
bility. This is the Bayesian credibility interval.

31 Point Estimation (Counts, Errors, Size)

The main tasks of Point Estimation are estimation of: error-rates of se-
quencing process, tag’s counts, tag’s abundance (also known as normalized
counts, proportion, concentration, etc) and transcriptome size.

Transcriptome’s size and distribution estimation, i.e., to find out how
many different transcripts are expressed in a given cell condition and how
transcripts are distributed among the expression levels, are very impor-
tant problems. We let these problems aside because they are well dis-
cussed in Chapter 10. We remind the reader that transcripts’ distribution is
very skewed toward zero, i.e., there are several transcripts with low abun-
dance and few highly abundant transcripts. Along with careful reading of
Chapter 10, we recommend the works of Stollberg et al. (2000) and Stern
et al. (2003) that show, by simulation approaches, the ill-posed nature of
these kinds of estimation problems with the usual size of SAGE libraries.
Perhaps these problems could be resolved in the near future by using
alternative technologies such as Massively Parallel Signature Sequencing
(MPSS) (Brenner et al., 2000).

In the following, we will discuss error-rates estimation, the first issue to
be considered in a SAGE statistical analysis pipe-line.

One can imagine that tag counting is clearly defined by sequencing
machine output and it is sufficient to count the sequences identified in
the chromatograms. However, the SAGE sequencing itself is subjected to
stochastic processes like enzyme amplification errors or sequencing base
miscalling. Therefore, a tag outcome could be modeled and estimated. The
estimation of the error-rates are relevant issues.

The number of sequencing errors in a 10-base tag, assuming that base
miscalling is equally probable for all nucleotides and independent of posi-
tion inside the sequence, follows a Binomial(10,e) distribution where
¢ is the error-rate in errors per base units. The relevant quantities are
P(just 1 error) = 10 - el(1 — &)°, P(errors > 1) = 1 — (1 — £)'% and
P(errors > 2) = P(errors > 1) — P(just 1 error). The first estimate of &
came from the work of Velculescu er al. (1997), since they compared their
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SAGE results with the yeast's com
£ = 0,007 or Plerrors = 1) =0.06
CITor-rate is very common in SAGE
EST sequencing projects, because it
ity score cutoff of 20 in the well-know,
analysis software (Ewing and Green, 1998),
Colinge and Feger (2001) worked with & = 0.01 and
1) = 0.096 > Perrors = 2) = 0.004
jority of sequencing errors should be a single
have neighbor tags due to nucleotide substitution, insertion and deletion,
i.e., tags that differ from each other by only one application of such edit-
ing operations, They constructed a Iransition matrix with (Pl = p(jlk)
elements as the probability that the observed k-th tag is counted as the ob-
served j-th tag due 1o one-step substitution sequencing error. Note that a
rare tag with no single-substitution distant neighbor tag has p(j|j) = 1,
in spite of having P(no erors) = (1 — £)'% = 0.904. A more refined ap-
proximation would consider insertions and deletions in the path from tag k
to tag j:

base change. A lag may

P(lk) =P(j « kY =P(I) +P(D) + P(S)

~P(ORD) — P(1)P(s) — P(D)P(s)
+PI)P(D)P(s) (aLn

where 1, D or § are the transitions {J « &k
deletion or substitution ¢Irors, respectively,
Blades et af, (2004a) devised a simple procedure to estimate these first-
order error-rates from each library, They call shadows the tags generated
by process artifacts, Cleverly, they write the error-rate as the increase of
shadows counts s obtained with the increasing of true counts x for a tag:

) due to one-step insertion,

As As 1 1
b= == _ 112
Ax Ay 4 As (As/Ay)—1 47 6141

where y are the observed counts,
1 all neighbors were

counts space. However, this is not trye and therefore, we need to identify
in this space a subser of (3, $;) points for which this assumption seems
reasonable. Due to the highly skewed form of the transcriptome towards

plete sequenced genome, They found
. The use of 19 approximation for the

analysis, imported from genome and
corresponds 1o a widely used qual-
n phred sequencing chromatogram

thus P(errors >
- This fact suggests that the ma-
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To use all data (y;, ;) points without choosing, it is necessary to carry
out some very robust linear regression since there is superposition with (y;,
s;) pairs for which several rightful neighbors exists. Blades et al. (2004a)
claim that robust regression performs better than regular linear regression
or resistant regression. Figure 11.1 shows an illustration of their estimation
method for one of the libraries utilized in their original work, the normal
pancreatic HX library (GEO accession: GSM721). Using robust linear re-
gression, they found an error-rate of ¢ = 0.09, with [0.07; 0.11] as 95%
confidence interval, for base substitution error. The line corresponding to
20% error-rate is shown for illustration (see also web-Fig. 2).

In the following, we will discuss the counting estimation.

One can suspect that some of the rare tags occurrences are not real,
being result from experimental errors. An example could be an abundant
tag that suffered a change by sequencing error in one of the 10-base tag,
yielding a non-existing unique tag or inflating the counts of other tags.
Colinge and Feger (2001) proposed an estimation method that accounts
for sequencing errors. They approximate the sequencing error effect to the
expectations of first-order errors and build a system of linear equations:

v = p(UDx; +--- + p(Li)x pAIL) ... p(N7
: Sx=[ 1 . y

Y= pllxs + - + pliDx pCll) ... pl)
(11.3)

where ¢ is the number of observed unique tags, p(j|k) is the probability
that the observed k-th tag is counted as the observed j-th tag due to one-
step sequencing etror, x are the true unknown counts and y are the observed
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Figure 11.1. The substitution error-rate estimation, Normal pancreatic library HX (GEO
accession: GSM721). Adapted from (Blades et al., 2004a).
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counts. By first-order we mean that only the main effects are accounted
for in the approximation, ie., p(jlk) = P(j < k) < P(j < --- « k),
where arrows denote the error process of insertion, deletion or substitu-
tion. In spite of the validity of the fundamental propriety Zx. =m = Iy.,
their approximation forces the impossible continuity of counts, i.c., yj €
(0,1, ...,m] but their solutions x; € . Akmaev and Wang (2004) criti-
cize this fact warning for lack of interpretability of true counts estimates,
especially when yielding negative counts. A possible and conceptually cor-
rect formulation to approach eror-free counting estimation should search
solutions in constrained space @ = ((xy, ..., x,) : xj € Zy, Zx. =m).
Such a kind of problem is called by computer scientists as an Integer Pro-
gramming problem, and dealing with it as if it is a continuous Linear
Programming, or even a simple Linear Algebra problem, is an inappro-
priate approach. Akmaev and Wang (2004) offered an alternative to the
Colinge and Feger (2001) method to correct for sequencing errors. They
use a multi-step heuristic approach very linked to SAGE process mechan-
ics that preserves the data’s discrete nature and uses information from
chromatograms and phred scores (Ewing and Green, 1998). The statis-
tical analysis is just one step of their Bioinformatics algorithm, available
trough SAGEScreen software. Another recent alternative is the method de-
veloped by Beifibarth er al (2004) that is based on an EM-algorithm and
on a rigorous and complete statistical modeling of sequencing errors, tak-
ing advantage of phred scores, It is important to notice that corrections of
potential errors at counting level or denoising techniques (Blades ef al.,
2004b) are promising approaches, but not yet widespread standard proce-
dures in SAGE analysis.

In the following, we will discuss abundance estimation.

At first sight, the problem of estimating the abundance z € [0; 1] of
a tag could be regarded as an casy and uninteresting problem: p=x/m
and that’s all, where x is the (pre-processed or not) number of counts for
a given tag, m is the total amount of sequenced tags and p is the estimate
for =. However, other elaborate options exist. In fact, p is the Maximum
Likelihood (ML) estimator of a Bernoulli Process. The Bernoulli or Pois-
son modeling, and not the Hypergeometric modeling for example, are
widely used mathematical frameworks for gene expression counting data
because “sampling from an infinite population approximation" is adequate
(of course, m is much smaller than the total amount of mRNA molecules
in the harvested cells).

In the Bayesian framework, all parameters are unknown quantities and
previous knowledge about it is quantified by means of a priori pdfs. If we
believe in the Bernoulli Process description of SAGE, then, by Bayesian
analysis:
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(1 _ ”)m—x+ﬂ—1”x+a—]

Bx+a,m—x+p)
(11.4)

where @ > 0 and f > 0 are parameters that define the Beta a priori
pdf, x is the number of counts for a given tag, m is the total of sequenced
tags, 7 is the tag abundance, L(-) is the likelihood function and B(+) is the
beta special function, Beta is a standard priori choice in Bayesian analy-
sis and it is very flexible to accommodate various kinds of prior knowl-
edge. Note that Eq. 114 is equivalent ta the result: if # ~ Beta(a, f)
and x|x,m ~ Binomial(x, m) then # |x,m ~ Beta(a +x, f +m —x), a
basic result that will be used several times in this chapter. The Posteriori
Mode, i.e., the value of parameter that lead @ posteriori pdf to its maxi-
mum, is p = (x +a — 1)/(m + a + f — 2). Therefore, the only way to
get the same simple estimate obtained from the ML approach, is by using
the uniform a priori, i.e., « = ff = 1. Other informative priori choices
may have influence in the abundance estimate and could be derived from
the transcript level distributions.

Morris et al. (2003) raised a series of criticism against the use of simple
ML estimator p = x/m in SAGE analysis. In spite of the very common
use of Binomial to model the outcome of a given tag, they have reminded
that SAGE is an incomplete multinomial sampling;

= hxlx) =

h(z) o (1 =)~ 1ga-l
Lx[r) (1 — m)™*g*

xj

!
.
L(x|m, m) =m!Hﬁ (11.5)
j=177

where 7 is the abundance and x; are the counts of the j-th tag, 7 €
{(m1,....m) t @ > 0, Ex. = 1), 1 is the number of unique tags and m
is the total amount of sequenced tags. By “incomplete” we mean that r is
unknown, but to go further with this modeling, one must assume that it is
known in advance, Note that = j = Uis not allowed, but for an existent and
non-observed tag, the ML estimator is p = 0. Since we (assume to) know
that there must be ¢ transcripted tags, j-th tag's x j = O means that r; <
I/m. These tags are called underrepresented and, since £x. = 1. the oth-
ers are overrepresented. They suggest that this is not a minor effect based
on the skewness of gene expression distributions and propose a “Robin
Hood” non-linear shrinkage estimator for abundances. It is important to
note that Stem et al. (2003) warned about usual SAGE studies’ inability
to estimate the number of unique transcripts 1, arguing that m should be
larger than is nowadays available in SAGE studies. This could be a major
drawback for the use of Morris et al. (2003) estimator in general cases.
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3.2 Estimation by Interval (Error-Bars)

The second and complementary approach to obtain quantitative insights
about unknown parameters is by means of Estimation by Interval, or using
informally terms, to define error-bars.

The SAGE process is analogous to the well-known “balls and urns” sta-
tistical problem. In practice, this means that a lot of theoretical framework
is already available and proposed statistical models have solid underly-
ing physical basis. For microarray data, for example, this is not true since
competitive hybridization is a physical phenomenon much more harder to
model, requiring assumption-prone analysis from statisticians. Given the
simple “counting” nature of SAGE data, it is easy to report tag abundance
with some error-bar.

Using basic Bayesian statistics, as in Section 3.1, and choosing a
non-informative uniform a priori we saw (Eq. 11.4) that tag abundance
is w [x,m ~ Beta(l +x, 1 4+m — x), where x are the counts and m the total
size of the library. Once a credibility level o is defined, it is only necessary
to integrate around the posteriori’s peak until this probability is reached
(Fig. 11.2).

A tag with x = 16 counts in m = 80,000 has an abundance of 2.0- 10~4
and its 68% and 95% credibility intervals are [1.5 - 10%;2.5-10*] and
[1.2-107%;3.1- 10741, respectively. A tag with x = 32 and m = 160,000
has also an abundance of 2.0 - 10~4, however, its 68% and 95% credibility
intervals are more precise, respectively [1.7 - 107%; 2.4 - 107*] and [1.4 -
1074;2.7 - 1071, as one intuitively expects.

Sometimes, people prefer to model such kinds of rare counting data,
like SAGE, using Poisson random variables. In this case, the parameter
in focus is Z, the number of counts per m (note that 1 = m=z). Audic

Density
Density

- T 1 -
0.0 0.5 10 00 02 04 06 08 10
n | data n | data

Figure 11.2. The error-bar construction. Left: three examples of credibility intervals
Right: posteriori peak can coincide with interval boundaries.
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and Claverie (1997) remind the Frequentist alternative for the problem,
the Ricker’s formula, to find an a% confidence interval [1;; 1;] for A.
Using this different approach with, again, x = 16 and m = 80,000 we get
A = 16.0 with [12.0; 21.1] and [9.1; 26.0] for 68% and 95% confidence
intervals, respectively, or using abundance as result 2/m = 2.0- 10~# with
[1.5-107%;2.6-10~%] and [1.1-10™%; 3.2.10~4]. Note that in this example
the results were very similar to Bayesian analysis but this is not a general
fact. There are several examples in statistical literature in which Bayesian
and Frequentist analysis disagree.

In Gene Expression analysis, hybridization-based techniques such as
¢DNA microarray or traditional northern blot give, by construction, rela-
tive results, e.g., expression ratios. Given two gene abundances obtained by
SAGE, it is easy to transform them into expression ratios but the opposite
is impossible. Until now, the only solution that we know for the Estima-
tion by Interval of expression ratio in the SAGE community is a Bayesian
solution (Véncio et al. 2003). As viewed before, x|x,m follows a Beta
pdf, but for two classes A and B the pdf of R = (zal|xa,ma)/(wBlxp,mB)
could be hard to obtain analytically. Véncio et al. (2003) sampled pseudo-
random numbers from Beta pdfs that describe each class and estimated
the expression ratio R pdf calculating the quotient for every pair-wise
simulated observations. In fact, the estimated distribution is the pdf of a
re-parametrization of expression ratios @ = 1/(1+R) € [0;1] because it
is better suited for non-parametric Kernel Density Estimators since R €
[0; 0o]. Once obtained the a% credibility interval, it is easy to go back
to R space solving Q for R. For a given tag, the final result could be
presented as R = 5.8 with the possible scenarios for 95% credibility inter-
vals: [5.5;6.0], [1.2;15.3], [2.2; oo] or [0.3;25.5], instead of simple 5.8-fold
change. The first scenario is the ideal situation with an intuitively small in-
terval indicating a relatively precise result for differential expression ratio;
the second scenario suggests that, although differentially expressed, the
quantitative aspect of the ratio is poor since ratio possibilities are wide-
spread in a wide interval; the third shows that the only safe conclusion,
with this level of credibility, is that the ratio is greater than 2.2-fold; and
the last scenario indicates that the ratio is very wide, crossing the non-
differential expression ratio R = 1 barrier, and should not be seriously
considered in spite of 5.8-fold indication of an apparent significant change.

4. Differential Expression Detection

Although SAGE is innovative from a biological viewpoint, it is, from
statistical viewpoint, a very old and known problem: to draw balls from
urns. We will discuss the statistical viewpoint of the comparison between
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libraries and its possibilities, but one should always have in mind that we
are working with difficult biological data. This means that sometimes we
do not have enough samples to be compared, because the disease is very
rare or because obtaining the samples is a hard technical issue, for exam-
ple. For this cases, several single-library pair-wise comparison methods are
available. Sometimes, in the Statistics viewpoint, this comparison sounds
inappropriate. As SAGE, “Digital Northern” or MPSS are not easy and
cheap techniques, we would like to stress that in this field it is very impor-
tant to release data into public databases to ameliorate this problem. Only
recently SAGE community learned how to account for the within-class,
or between-library, variability in SAGE analysis (Baggerly et al., 2003;
Véncio et al., 2004). Until that, differential expression detection meth-
ods merged all count observations from libraries that compose a class in
“pseudo-libraries”, in order to use previously available pair-wise compar-
ison techniques.

4.1 Single-Library or “Pseudo-library”

There are several methods for dealing with single library in each class,
i.e., methods that consider only variability due to sampling error. Even
when biological replicates are available, it is very common in SAGE stud-
ies to construct a “pseudo-library” aggregating the counts of biological
replicates and use these single-library methods. There are 3 clear distinct
groups of methods: simulation based, Frequentist and Bayesian.

The simulation based method is well-known because it was the cho-
sen method in the original Science paper describing differential expression
analysis with SAGE (Zhang and Zhou et al., 1997). Some details of their
algorithm are just available inside simulation software’s source code (Prof.
Kinzler, Johns Hopkins University School of Medicine, personal commu-
nication). To find differentially expressed tags between two libraries A
and B, simulated data sets were generated using a Monte Carlo technique,
or in other words, by creating each & simulated data set distributing the
(xja + xjp) counts of the j-th tag according to a rule, repeating for all ¢
unique tags:

w IS
Ha = 2 Hsmanamar!) u~Ugy  (1L6)
xjkB? =Xxja+Xjp— x](];)

where u, are uniform pdf realizations, 1 is the indicator function and m
are the total sequenced tags of each library. To quantify the evidence of
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the tag, they defined a measure called P-chance K:

100000
min| 100, 1 ; 1
2 L0815 gl Q-5 574101 20}

K;=
/ min(zot, 100000)
(11.7)
where rot is:
tot
: =1
; l{llka)—X;'gl > IIjA_XjBI]1{(1,(-‘2‘xj(*2)'(«‘j44 *XjB)ZO] 00

This is only a formal way to say that they simulate samples until 100 occur-
rences of the event “difference in simulated data set is equal/greater than
actual observed difference”, or 100,000 runs limit is reached, counting the
occurrences until this Jimit. The selection of a significant X is done by
comparing it with those obtained from an artificial data set that represent
the null hypothesis of no differential behavior between libraries:
Xja+xj
XjAN = XjBN = L ; 5 (11.8)

Repeating the same procedure of Eq. 11.6 and Eq. 11.7 for this “null data
set” one can choose a suitable X for his observed experimental differences.
SAGE300 and SAGE2002 softwares implement this method using 40 “null
data sets” to rank K.

The Frequentist approach is based on the proposition of a function of
the data and the discovery of the function’s pdf when there should not
exist differences between classes, i.e., the so-called null pdf. From this
Classical framework come the meaning of p-value, power of the test, size
of the test, etc. It is always based on fact that there exists some (assumed)
distribution from which the data was generated and one tries to estimate
mistaken conclusions (false positive and false negative) facing this under-
lying pdf. There is considerable Statistics literature comparing methods for
proportion testing. Comparisons in SAGE context are also available else-
where (Man et al., 2000; Romualdi et al., 2001; Ruijter et al., 2002). Some
studies show small advantages of one method in relation to others, but
Ruijter et al. (2002) remind that the differences are technical and negligi-
ble face the drastic approximation of dealing with no biological replicates
or, as they called, “one measurement” framework. We discussed replica-
tion based methods in Section 4.2. The main Frequentist methods are the
well-known Classical Fisher’s exact test for contingency tables and Z or
%2 based methods that use asymptotic results to get p-values. For large
m values, the combinatorial computation needed in Fisher’s test becomes

—
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hard, but the standard approximations become very accurate. The approx-
imate test mostly known in the SAGE community was suggested by Kal
et al. (1999). For the significance level &, we say that there is differential
expression if:

X 2k

A B

Smi >omi

A B > 7,
DX+ X+
A B 1_ A B 1 g 1
>omi+ > m; Xmi+mi || Xmi Xmy
A B 2 B A B

(11.9)

where Z, is the standard normal a/2 quantile, x; is the number of counts
of a particular tag in the i-th library and m; is the sequenced total of the
i-th library.

The Bayesian approaches follow the Bayesian Statistics framework, us-
ing Bayes’ rule to go from previous information, the so-called a priori
pdf, to the information updated by the observations, the so-called a poste-
riori pdf. They work at the parameter space instead of sample space and
do not admit the existence of “data that could be observed but was not”.
Therefore, the Bayesian p-value has not the same interpretation of the Fre-
quentist one. It is easy to rewrite the Eq. 11.4 to accommodate several sep-
arate replicates from a Bernoulli Process, only generalizing the Likelihood
function:

A®Ir) =[] Lexlm) « 1 _ & B A (11.10)

i=1

This means that 7 [data ~ Beta(a+Xx., f+Xm.—Zx.) for A or B classes.
There are several ways to rank the “equality of abundances” hypothesis,
ranging from simple Bayes Error Rate (Duda et al., 2000) to the well-
known Jeffreys’ test for precise hypothesis (Jeffreys, 1961) or the genuine
Bayesian test for precise hypothesis presented in Madruga et al. (2003).

Analysis of equality of abundances 74 = 7 is not the only paradigm
that could be used. It is also possible to carry out significance ranking using
absolute counts Zx. or using expression ratio fold-changes =4 /7 p. The
most known Bayesian methods using these alternative paradigms are Au-
dic and Claverie’s (1997) method and the method implemented by
SAGEmap and SAGE Genie (Lal and Lash et al., 1999).
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Supposing that the sampling process is well approximated by a Poisson
distribution, Audic and Claverie (1997) write the probability of observing
the data from one class, given the data observed in the other class. They
say that there is differential expression, with some pre-defined probability
a, if:

w |G+ [Xm\" o\ T Zan!
Pl (;x,‘)!k! §m,- ;m; 2"
(11.11)

where again m;’s and x;’s are summed over each class A and B to cre-
ate the pool and B(:) is the beta special function. Another well-know
Bayesian method is the method adapted by Lal and Lash et al. (1999)
from Chen et al. (1998) to accommodate classes with different total counts.
This method is implemented in the important SAGE public database tools:
the National Center for Biotechnology Information’s SAGEmap (http://
www.ncbi.nlm.nih.gov/SAGE), and the National Cancer Institute’s Cancer
Genome Anatomy Project - SAGE Genie (http://cgap.nci.nih.gov/SAGE).
They determine the posterior probability of fold-changes in expression ra-
tio R greater than an arbitrary value R*. The a posteriori pdf used is:

. . ; ;i —(%: xi +§ Xi)
h@X,M,0)xg 4 (1-q) 3 1+gq—l]
5 (3
(11.12)

where ¢ is a convenient reparameterization of expression ratiog = R/(R+
1) and ¢ is a constant that came from an a priori pdf being modeled by pre-
vious knowledge of researchers. In SAGEmap and SAGE Genie tools, for
example, it is assumed ¢ = 3 (Lal and Lash et al., 1999). The Eq. 11.12
holds for fold-change R of class A relative to class B and for estimated
abundance in A class greater than in class B, ps4 > pp. If the contrary oc-
curs, just permute the classes labels in Eq. 11.12, for simplicity. It is impor-
tant to note that a crucial difference/difficulty arise because the differential
expression conclusion depends on a pre-defined fold-change. The test an-
swers the question about this fold-change and it is the user’s responsibility
to define what is a fold-change that means differential expression. Using
SAGE Genie’s method with X sm = 80,000, Z4x = 60, Zgm = 50,000,
Zpx = 10, pa/pp = 3.75 fold change and R* = 2, for example, we ob-
tain by integration of Eq. 11.12: P(R > 2) = P(0.666 < g < 1) = 0.93.
For another cutoff example R* = 4 we obtain: P(R > 4) = P(0.8 <
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g < 1) = 0.19. Therefore, there is little chance that the true fold-change
is greater than 4-fold but considerable chance that it is greater than 2-fold
(see web-Fig. 3). However, if one defines that differential expression oc-
curs simply if an abundance is greater than the other, then P(R > 1) =
P0.5 < g < 1) = 0.999. This highlights the user’s responsibility in
defining a suitable R.

4.2 Replicated Libraries in One Class

Suppose that one is sampling colored balls from several ums. Also, before
choosing an urm, one choose at random which one will be sampled. To
make general conclusions about blue balls, one must weight the sam-
pling with the probability of choosing a particular urn, especially if it is
known that each urn could have different abundance of blue balls. A very
similar situation occurs when dealing with biological replicates in SAGE
analysis. Like the different urns in the above illustration, is intuitive to
accept that different biological replicates have distinct abundances for a
given gene.

For a given tag, the counting process of an i-th library is commonly
modeled as a Bernoulli Process with a fixed unknown abundance x; €
[0; 1]. The pdf of this abundance among all » libraries is unknown and =;
is the i-th realization of z. For a fixed tag, the likelihood of a particular
count x; in total of m; sequenced tags is often modeled by the Binomial,
weighted by the possible z outcome:

1
L(xi|m;, 8) :/ f(x)6) (’;1') (A —m)y"FigFidn (11.13)
0 i

The function f(-) is the unknown pdf of tag abundance =, and is all we
want/need to know. This function is parameterized by vector 8. This is a
mixture model, with the Binomial being the mixing distribution, but oth-
ers, such as Poisson, could be used (Bueno er al., 2002). Since we do
not know in advance the stopping rule, the pdf could not be a Binomial
but differ only by a multiplicative constant. To reach the common Bino-
mial model, used by almost all SAGE methods, it is enough to assume
that f(-) is a degenerate pdf over some scalar value 8, ie., a Dirac’s
Delta function constrained to [0;1]. With this assumption, we tacitly ig-
nore the possible variability between libraries, due to any reason other
than sampling, since only # = @ has positive density. Using a much
more realistic approximation, one could assume that the tag abundance
in different libraries f(-) is described by a Beta random variable, with
non-zero variance. This leads to the well-known Beta-Binomial model,

-
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and appears in the SAGE differential expression context introduced by
Baggerly et al. (2003), derived as a hierarchical model in a Frequentist
framework instead of a particular case of a mixture model. For a fixed tag,
given the vector of counts X = (xi, ..., x,) and the vector of sequenced
totals M = (my, ..., m,) in all n libraries of the same class, it is neces-
sary to fit the Beta-Binomial model parameters and to test for differential
expression.

In the Frequentist framework first proposed by Baggerly et al. (2003),
Pi = xij/my; is used as an estimator of z; and a linear combination of
these abundances is proposed as the correct way to combine results from
different libraries:

n N
" wip? — p* 3w}
p=Y wip, Vy=2= — = et il
P T a -+ f+m
i=1

(11.14)
where w; are the weights that yield an unbiased minimum variance esti-
mator V, for weighted proportion’s variance and 8 = (a, ) are the Beta
pdf parameters. However, this unbiased variance could be unrealistically
small when it becomes smaller than the sampling variability. We know
that the variance of this model cannot be smaller than the variance eventu-
ally obtained if we do not consider within-class variability. Therefore, they
propose the final ad hoc estimator:

V = max [Vu; Vp.veudo—lib] (11.15)
where:

n n
> % I
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n n
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The max(-) function assure that V is not unrealistic small when V,, is unre-
alistic small. Vpseugo-1ip 18 exactly the natural estimator for variance if one
considers f(:) as a Dirac’s Delta instead of a Beta pdf as the underlying
model. Note that the Zx./Zm. term is equivalent to the abundance if one
merges all libraries into a “pseudo-library”. To fit all these parameters, they
used the computationally practical Method of Moments. Once pa, pg, Va
and Vp are found for classes A and B, it is necessary to test if the propor-
tions are significantly different. Evoking asymptotic results they propose

l
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the use of a t,, statistics as following a Student’s 747 pdf:
PAZPB o (Va + V)

=L - = (11.16)
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A different approach that accounts for within-class variability, uses the
Bayesian Statistics framework and does not rely on asymptotic results was
recently presented by our group (Véncio et al., 2004). Considering our
likelihood as obtained by the Beta-Binomial model, it is easy to write the
a posteriori pdf:

n

B(og + x;, fo +mi — xi)
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11.17
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where the indicator function is our a priori pdf. Note that we made a re-
parameterization since now @ = (6, 62) is the mean and standard devi-
ation (stdv) of the Beta pdfs that describe each class. The new parameter
space ® = {(61,8,):0 <6 <1,0 < 022 < 61(1 — 6,) < 1/4}, is more
intuitive than the common («, £) one and is bound (much more amenable
to numerical computations), We use the sub-index 6 in a and A to remind
that they are functions of a new parameterization, easily obtained from
Beta mean and stdv expressions. The a priori is an uniform pdf over ©,
but constrained to variances greater than the variance obtained by “pseudo-
library” construction. The variance “working floor” o2 come from the
Beta pdf obtained using the Eq. 11.10 generalization into Eq. 11.4. We
find the two Beta pdfs that describe each class taking the Posteriori Mode,
ie., (61,02) € @ that lead Eq. 11.17 to its maximum (see web-Fig. 4).
Finally, to test if a tag is differentially expressed between the two classes,
we propose an evidence measure other than the p-value. We use the intu-
itive Bayes Error Rate (Duda et al., 2000):

1
E =/ min(f(x18"), £(x16%) dx (11.18)
0

where 6 = argy (maxe (posteriori)). Small Bayes Error Rate E values
indicate that the whole Beta pdfs are “far apart”, thus with high evidence
of differential expression (web-Fig. 5). We rank tags by E evidence and let
biologists say what they intuitively think that is an unacceptable level of
superposition (classification error) between the two classes. An indispens-
able tool for checking intuitive consistency of the results obtained with
any method is the graphic representation of all individual observations,
like in Fig. 11.3 of Section 5. Using this simple tool one can easily note
the inconsistency of “pseudo-libraries” methods in several cases.
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4.3 Multiple Libraries Outlier Finding

There is a third type of comparison analysis using counting data that is to
find outlier libraries in a multiple libraries context. The methods reviewed
in previous section deal with pair-wise comparison of classes, having one
or more libraries, accounting or not for biological replication. On the other
hand, multiple libraries comparison is not pair-wise but rather search for
tags with a “non-usual” behavior in a set of libraries. The concept of class
is non longer used, or in other words, all libraries are regarded as an unique
class.

Probably, the most known method for outlier detection was the method
presented by Stekel et al. (2000). It came to improve the previously avail-
able method introduced by Greller and Tobin (1999) which only detects an
outlier very different than others in a set of libraries. Stekel et al. (2000)
proposed a flexible solution that tries to detect if a transcript has the same
abundance across several libraries simultaneously. For example, the input
could be several tissues and our aim could be to detect tissue-specific tran-
scripts. They skip from p-value pitfalls and simply rank their proposed R
statistics. For a given tag and fixed some cutoff R*, we say that there is
differential expression in at least one library if:

n

S x| =F%—||=R>R* (11.19)
i=1 ™Y %

where x; are the counts for some tag in i-th library and m; is the total of
sequenced tags in i-th library. To help the user to define a R* cutoff, they
propose an alternative evidence measure called believability. This measure
is obtained by an usual randomization strategy or from asymptotic appeal
since 2R — )(3_1.

5. Iustration of Methods Application

In order to gain intuition about the methods presented in this chapter,
we applied some of them to a relevant publicly available data set. Our
analysis, along with R language (Ihaka and Gentleman, 1996) scripts,
are available in detail at the chapter’s supplemental web-site: http://
www.vision.ime.usp.br/~1rvencio/CSAG/. Our aim is to search for genes
differentially expressed between grade II and grade III astrocytoma from
bulk material collected from different patients. The data is available at
SAGE Genie web-site at (http://cgap.nci.nih.gov/SAGE). Table 11.1 shows
the libraries used in this illustration. Here we do not want to focus on bi-
ology of the analysis but rather in the fundamental difference of methods

l
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Table 11.1. Brain tumor library from SAGE genie.

o Library Name — Class A Total Tags
1 SAGE Brain_astrocytoma_grade _1II_B_H1020 51573
2 SAGE Brain_astrocytoma_grade I[[_B_H970 106982
3 SAGE Brain_astrocytoma_grade_[II_ B_R140 118733
4 SAGE Brain_astrocytoma_grade_III.B_R927 107344
grade IIT merged “pseudo-library” 384632
# Library Name - Class B Total Tags
3 SAGE_Brain_astrocytoma_grade II_ B_H563 88568
] SAGE Brain_astrocytoma_grade II_B_H359 105764
7 SAGE _Brain_astrocytoma_grade 11 B_H388 106285
8 SAGE Brain_astrocytoma_grade I[_B_HS30 102439
grade IT merged “pseudo-library” 403056

for differential expression detection. However, we take care to define each
class with libraries with the same histopathological grade and only from
bulk material, excluding cell lines,

Following the previous sections we applied a pipe-line for statistical
analysis. We used some methods of Estimation section and concentrated
our attention on Differential Expression Detection section.

First we tried to estimate the sequencing substitution, insertion and dele-
tion error-rates of our data-set. We applied the Blades er al. (2004a) error-
rate estimation method described in Section 3.1 but was difficult to carry
out the line fitting, similar to those used in Fig. 11.1 line fitting, due to
lack of points at higher expression level. On the other hand, the method
proposed by Akmaev and Wang (2004) can be applied only to original
output data from sequencing machines, the chromatograms, thus it was
impossible to use it here since public databases have the raw counting data
and not the original chromatograms. Therefore, we moved further without
counting corrections.

Second, given the tags’ counts, we used the Posteriori Mode for abun-
dance estimation with non-informative uniform a priori pdf (Eq. 11.04)
to match with Maximum Likelihood estimator. We want to focus on the
differential expression detection issue.

Third, as an initial approach to differential expression detection, we
merged all libraries of each class summing their observations and creating
the so-called “pseudo-libraries”, as usual in SAGE analysis. To perform
the Fisher’s Exact Test, the xz, and the Audic and Claverie (1997) methods
discussed in Section 4.2, we used an user-friendly freely available software
called IDEG6 (Romualdi et al., 2001). It has an on-line web-version and
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also perform the Stekel et al. (2000) or Greller and Tobin (1999) meth-
ods for multi-library analysis. To perform the Lash and Lal et al. (1999)
Bayesian method we used SAGE Genies’ on-line tool but we have imple-
mented their method as a R script to allow the use in any data-set.

Finally, to perform the same analysis in a replicated library context, dis-
cussed in Section 4.1, we used the only two available solutions: our SAGE-
betaBin method (Véncio et al., 2004) and the first published solution, the
Baggerly et al. (2003) ¢-test approximation.

As previously and emphatically announced in Section 4 introduction,
the results could be very different using the common “pseudo-libraries”
methods or these two that account for within-class inherent variability. A
tag considered differentially expressed using replicated library methods
should always appear as differentially expressed using “pseudo-library”
methods. However, the opposite is not always true. An example of such an
effect is obtained for the AATAGAAATT tag, corresponding to secreted
phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-lymaphocyte
activation 1) gene. Using any available “pseudo-library” method, one is
lead to believe that this tag is differentially expressed with high signif-
icance. As calculated by IDEG6 software, all methods give 0.00 (zero!)
p-values. The SAGE Genie’s method gives 0.00 (zero) p-value for a dif-
ference greater than 2-fold or 0.01 for a difference greater than 4-fold.
Also, our error-bar method (Véncio er al., 2003) shows that 95% credibil-
ity interval is [4.3;6.7] for R = 5.3-fold change of A relative to B class and
does not surpass ratio equal to 1. All of these results indicate a very high
level of confidence in the differential expression conclusion. However, if
one plots the individual abundance results for each library, it is easy to note
that the conclusion of all these methods is suspicious.

On the other hand, the two methods that account for within-class vari-
ability do not claim a high significance for this tag, as one intuitively sus-
pects looking at the superposition of crosses (class B) and circles (class
A) in Fig. 11.3. The Baggerly et al. (2003) ¢-test approximation gives 0.21
for p-value and our SAGEbetaBin evidence is 0.48, indicating great su-
perposition between pdfs that describe each class (curves in Fig. 11.3), as
discussed in Section 4.1. These results do not support this tag as being
differentially expressed in general terms. This is an illustrative example
because just one class A library leads traditional analysis to a mistaken
conclusion, but there are other more subtle cases (see supplemental web-
site data and web-Fig. 6). In this illustration we consider a tag differentially
expressed if it has Bayes Error Rate, arbitrarily defined, E < 0.05.

Sometimes this finding could bring difficulties in the differential expres-
sion validation by other techniques. It is important to note that when we
are dealing with high variability between samples, and we are not taking
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E=0.48, lag: AATAGAATT
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Figure 11.3. Example of tag regarded as differentially expressed by “pseudo-library” methods
but discarded by replicated-library.

this variability into account to select our differentially expressed candi-
dates, the validation process could become completely arbitrary. It will
rely on the samples chosen. The final list of differentially expressed tags
between grade I and grade 111 astrocytomas, their values, and fold change
error-bars are available at a supplemental web-site.

6. Conclusions

In this chapter we aimed to give a guide to the state-of-art in statistical
methods for SAGE analysis. We just scratch some issues for the sake
of being focused in differential expression detection problems, but we
hope that main ideas could be useful to track the original literature. We
saw that estimation of a tag abundance could not be simpler than ob-
served counts divided by sequenced total, but rather can receive sophis-
ticated treatments such as multinomial estimation, correction of potential
sequencing errors, a priori knowledge incorporation, and so on. Given an
(assumed) error-corrected data set, one could search for differentially ex-
pressed tags among conditions. Several methods for this were mentioned,
but we stress the importance of using biological replication designs to cap-
ture general information. Finally, we want to point out that only accumula-
tion of experimental data in public databases, with biological replication,
and use of good statistics could improve usefulness of SAGE, MPSS or
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EST counting data in general terms, helping to elucidate basic/applied
gene expression questions.
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