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ABSTRACT. One of the goals of gene expression experiments is the
identification of differentially expressed genes among populations that
could be used as markers. For this purpose, we implemented a model-
free Bayesian approach in a user-friendly and freely available web-based
tool called BayBoots. In spite of a common misunderstanding that Baye-
sian and model-free approaches are incompatible, we merged them in
the BayBoots implementation using the Kernel density estimator and
Rubin’s Bayesian Bootstrap. We used the Bayes error rate (BER) in-
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stead of the usual P values as an alternative statistical index to rank a
class marker’s discriminative potential, since it can be visualized by a
simple graphical representation and has an intuitive interpretation. Sub-
sequently, Bayesian Bootstrap was used to assess BER’s credibility. We
tested BayBoots on microarray data to look for markers for Trypano-
soma cruzi strains isolated from cardiac and asymptomatic patients.
We found that the three most frequently used methods in microarray
analysis: t-test, non-parametric Wilcoxon test and correlation methods,
yielded several markers that were discarded by a time-consuming visual
check. On the other hand, the BayBoots graphical output and ranking
was able to automatically identify markers for which classification per-
formance was consistent. BayBoots is available at: http://www.vision.
ime.usp.br/~rvencio/BayBoots.
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INTRODUCTION

An important challenge in gene expression analysis is the decision of whether a particu-
lar gene is differentially expressed between two populations and could therefore be used as a
marker for one of the two classes. Multi-class comparisons can also be partitioned and reduced
to this paradigm. To our knowledge, there are no model-free solutions in a Bayesian statistical
framework available for high-throughput detection of biomarkers.

We focused on gene expression data obtained in a high-throughput fashion from mi-
croarrays; however, the rationale is readily applicable to expression data obtained from other
technologies with a good level of measurement replication. Microarray statistical analysis is
known to be particularly challenging, due to the many sources of random and systematic errors
that affect hybridization measurements (Zhang and Shmulevich, 2002). The advantages of the
Bayesian over the Frequentist statistical framework for microarray analysis have been thor-
oughly discussed elsewhere (Yang et al., 2004).

Bayesian statistics often relies heavily on modeling because we need to know the like-
lihood function associated with a probabilistic model that describes the data, in order to subse-
quently use the Bayes rule, and finally ask inferential questions about the parameters, given the
data. Conversely, model-free approaches rely only on observations, bypassing the proposition of
a probabilistic model for the data (Troyanskaya et al., 2002). These features create some intui-
tive understanding that Bayesian analysis and model-free analysis are incompatible approaches
(Ferguson et al., 1992; Müller and Quintana, 2004). In spite of this misunderstanding, a non-
parametric determination of the a posteriori probability density function of interesting quanti-
ties can be achieved by the utilization of Rubin’s version of the non-parametric Bootstrap tech-
nique (Efron, 1979), called Bayesian Bootstrap (Rubin, 1981). Our contribution was to couple
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these two well-known paradigms, the model-free and the Bayesian approaches, into a freely
available, easy-to-use, web-based statistical analysis tool called BayBoots.

MATERIAL AND METHODS

BayBoots is available at http://www.vision.ime.usp.br/~rvencio/BayBoots and allows
multi-user “BLAST-like” job requests, e-mail warnings and data privacy. To identify probes that
could be used as class markers, we used the Bayes error rate (BER), instead of the P values
from formal statistical tests, since the former has a simple and graphical interpretation. BER’s
properties have been discussed previously (Duda et al., 2000; Vêncio et al., 2004). Briefly, BER
measures how “far apart” the probability density functions of both classes are. For a given
probe, the probability density function of each class is estimated, in the model-free paradigm, by
the Kernel density estimator (KDE), using Silverman’s rule for optimal bandwidth selection
(Silverman, 1986), implemented in the R package (R Development Core Team, 2004). The
robustness of the BER that is obtained is assessed according to the Bayesian paradigm, deter-
mining credibility intervals (“error-bars”) on BER’s predictive probability density function yielded
by the Rubin’s Bayesian Bootstrap, using methods described in detail elsewhere (Vêncio et al.,
2003). It is important to keep in mind that model-free analysis, including Bootstrap-like tech-
niques, is meaningless if applied to a dataset having a very low replication level (Chernick, 1999;
Polansky, 2000).

For an illustration of BER logic, we simulated the behavior of two genetic marker
candidates in a simple example that does not lead to controversy if compared to the usual
methods (Figure 1A and B). In microarray applications, the input data is the normalized hybrid-
ization log

2
-ratio (M) of a particular probe. BER values closer to zero mean distributions are

“far apart” and suggest the best candidates for class markers. Otherwise, BER values are
closer to mean superimposed distributions and suggest the worst candidates. An adequate cut-
off for BER error values could be defined in each experimental set, ranking the results of the
probes from zero to one and performing some independent calibration experiments, such as
Northern blot or RT-PCR to disclose the biological meaning (and not only the statistical signifi-
cance) of each BER error level. This approach avoids the definition of cut-offs based solely on
statistical assumptions that cannot match the precision of subsequent validation techniques (Rockett
and Hellmann, 2004), such as the usual approaches: type I/II error analysis, multiple testing
corrections, false discovery ratio, and so on.

To illustrate the utility of our web-based tool for dealing with real data in a microarray
context, we used the data from a Trypanosoma cruzi experiment in which we hybridized the
cDNAs obtained from two populations of parasite strains isolated from patients with cardiac
manifestations of Chagas’ disease and from asymptomatic patients. Complete information about
the microarray slide and the hybridization is available at the GEO database (http://www.ncbi.
nlm.nih.gov/geo) under the accession number GSE1828. The first class was composed of three
strains from asymptomatic individuals and the second class, of three strains from cardiac pa-
tients. All hybridizations were performed using one of the asymptomatic strains as the common
reference. Hybridizations were performed in duplicate, and at least six replicates of each probe
were spotted on the slide, yielding at least 3 × 2 × 6 = 36 measurements for each probe. The
scanned images were submitted to quality control, intensity extraction and normalization pro-
cesses, as previously described (Baptista et al., 2004).
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RESULTS AND DISCUSSION

Traditional methods, such as the t-test, the non-parametrical Wilcoxon test and correla-
tion techniques, widely used by the microarray community, failed to automatically and selec-
tively detect convincing marker candidates. The well-known t- and Wilcoxon tests ask if the
means of two datasets are equal. The correlation method measures the Pearson correlation
between the expression ratio results and the class labels (e.g., defining “cancer” as 1 and
“normal” as 0, or 1 for “cardiac” and 2 for “asymptomatic”, and so on). These methods yielded
several candidate markers with very small P values or significant non-zero correlation, suggest-
ing differential expression. However, most of the candidates could be readily discarded by time-
consuming visual inspection of the M scattering, which revealed a high degree of superposition
among the observations of each class.

The results for all probes are available at a supplemental website (http://www.vision.
ime.usp.br/~rvencio/BayBoots). In particular, we highlighted results from illustrative examples
of good markers and several examples of suspicious markers that were considered significant
by the traditional methods.

Figure 1C shows a handpicked illustrative example of a probe that was detected as a
promising class marker candidate using traditional statistical methods, but was rejected since it
showed a clear superposition between the two classes. Based on the usual statistical methods,
this probe could be regarded as a relatively good class marker since it showed a t-test P value ≤
6 × 10-13, non-parametric Wilcoxon test P value ≤ 5 × 10-11 (both highly significant) and correla-
tion with class labels ρ = -0.841. However, a clear superposition of observations was detected
by BayBoots, suggesting that this probe is not a good marker. Several other similar examples
are available at the supplemental website.

The kind of graphical output generated by BayBoots could be very useful for avoiding
that candidates with poor performance, identified by microarray alone, be sent to time- and/or
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Figure 1. BayBoots approach to rank class markers. A and B show illustrative simulated data of two marker candidates.
Twenty expression log

2
-ratios (M) were simulated according to a normal and arbitrarily definition for class I (ticks) and

class II (circles). Probability density functions (PDF) of the simulated data are represented as a dashed line (class I) and a
solid line (class II). The mean and standard deviation of the M values are indicated above the peaks. The shaded area in the
overlapping probability density functions is the visual representation of the Bayes error rate (BER). C. The experimental
data for probe 3465. Actual observations and the estimated probability density function of cardiac (circles and solid line)
and asymptomatic (ticks and dashed line) classes are shown.
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resource-consuming subsequent validation steps, since they are probably statistical artifacts
(false-positives). Although visual inspection is always an objective way to check consistency of
results obtained by any statistical method, it is not a desirable solution in a high-throughput
context.

For our particular data set, independent Northern blot experiments were able to validate
markers, giving error levels of BER < 0.05. Markers with BER values greater than this empiri-
cally derived cut-off were not validated by independent Northern blot, yielding hybridization
bands with the same pattern among the strains probed. However, a similar cut-off “rule” could
not be defined using the output of the traditional methods, since there is no simple relation with
the Northern blot experiments (Baptista CS, Vencio RZ, Abdala S, Silva MN, Pereira CAB and
Zingales B, unpublished results).

We conclude that BayBoots interpretability and availability make it a valuable tool for
biomarker discovery.
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