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SUPPLEMENTARY INFORMATION 

Supplementary Methods 

Identifying genes induced by YF-17D in most vaccinees.  

The raw Affymetrix microarray probe data was assembled into probe sets representing 

individual genes based on the updated UniGene Build 199, January 16, 2007 to yield a 

list of 20,078 genes based on a previously published method instead of using Affymetrix 

predefined probe sets.  R (http://www.r-project.org/) was used to assemble the probe sets 

in combination with RMA pre-processing, which includes global background adjustment 

and quantile normalization.  Values below a minimum threshold of normalized fold 

change in expression of 0.01 for microarrays were reset to that threshold.  Gene 

expression at time points post-vaccination were converted to fold changes by subtracting 

the pre-vaccination day 0 expression value.  Genes with fold change in expression 

patterns that were similar among most subjects within a trial over time, were detected by 

identifying genes with normalized Log2 transformed fold change gene expression values 

>0.5 or <0.5 in > 60% of the subjects, at days 3 or 7 and then tested for statistical 

significance by ANOVA adjusted with the Benjamini and Hochberg False Discovery 

Rate method with a cutoff of 0.05 in Genespring (Agilent Technologies).   

 One-way ANOVA was used to test for differences on the expression levels of 

each gene among days 0, 3 and 7. This test does not depend on the number of genes since 

it is run independently for each gene. Benjamini and Hochberg False Discovery Rate 

method depends on the number of tests performed and a pre-selection filter may affect 

the multiple testing corrections. However, we believe that the pre-filtering cut-off used 

was very low (only a Log2 transformed fold change gene expression values of 0.5 or 41% 

increase or decrease on the gene expression levels in at least 3/5 of subjects) and 

necessary only to remove genes that did not fluctuate with time, which are often 

unexpressed/low expressed genes. Therefore, we believe that our pre-selection filter did 

not compromise our findings. Nevertheless, we explored testing the whole dataset by 

ANOVA without any pre-selection filter.  This resulted in a list of 22 genes 

(Supplementary Table 1).  This low number of genes is absolutely expected. A gene list 

with 20,000 genes will require for the gene with lowest P-value given by ANOVA an 

adjusted P -value lower than 0.0000025 (0.05/20,000) and for the gene with the second 
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lowest P -value, an adjusted P-value lower than 0.000005 (0.05/(20,000/2)). However we 

were curious as to whether this selection criterion were too stringent since it was not 

detecting the increased transcription of CD38 and IP-10, which we knew to be increased 

by flow cytometry and ELISA, data respectively (Fig. 2 & Supplementary Fig. 1).  Pre-

filtering allowed the detection of these genes that had already been “verified” at the 

protein level and identified an additional subset a genes with close biological interactions 

with the 22 genes already selected (Supplementary Table 1).  Furthermore, this 

expanded list of genes suggested a role for complement, which was verified by ELISA 

(Supplementary Fig. 4), and also had many more genes that could be verified by RT-

PCR (Supplementary Table 1).  Therefore while it is likely that omitting the pre-

filtering step may result in a more rigorous statistical analysis, we feel that it may be too 

stringent and exclude potentially biologically relevant genes. 

 

Identifying genes that correlate with magnitudes of immune responses.  

Genes, whose expression correlated with the magnitude of the T-cell responses were 

identified by comparing the % of CD38+ HLA-DR+ (activated) CD8+ T-cells to the 

normalized Log2 transformed gene expression values.   Genes with > 25% of the subjects 

having >0.5 or <0.5 change were analyzed by the Linear Model (lm) function in R to 

identify genes with a slope P-value <0.05.  A predictive model of T cell responses was 

generated using ClaNC run within R.  Principle Component Analysis (PCA) to visually 

reduce and summarize gene expression variance among the subjects was conducted in 

Genespring.  The student t-test was performed in Prism to test whether genes displayed a 

significant difference between subjects when they were grouped by T cell responses. 

Gene networks and functional relationships were analyzed with Ingenuity Pathways 

Analysis (Ingenuity Systems) and the DAVID Bioinformatics Database 

(http://david.abcc.ncifcrf.gov/home.jsp).  Transcription factor binding sites of gene lists 

were analyzed in TOUCAN v3.0.2 (http://homes.esat.kuleuven.be/~saerts/ 

software/toucan.php) using the TRANSFAC v7.0 database of eukaryotic transcription 

factors.  Binding site motifs were scanned for in the DNA sequence 2000 bases upstream 

through 200 bases downstream flanking the first exon of each gene with a double prior of 

0.1 and the genomic background noise model based on the third order Markov Model 
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from the Human Eukaryotic Promoter Databse (Human EPD 3).  RT-PCR genes from the 

Applied Biosystems Custom TaqMan Gene Expression plate, was normalized to the 

average Ct value of the housekeeping genes 18S rRNA (Hs99999901_s1), ACTB 

(Hs99999903_m1), and B2M (Hs99999907_m1) and then the difference in normalized Ct 

value between day 3 and 7 versus day 0 was calculated.  Correlation between the fold 

changes in microarray and RT-PCR data were calculated using Prism.  Genes believed to 

change with time post vaccination were tested for statistical significance by ANOVA 

adjusted False Detection Rate method with a cutoff of 0.05 in Genespring, as with the 

microarray data.  For the CD8 predictive model, correlation between microarray and RT-

PCR data for each individual gene was analyzed using Prism. For analysis of data from 

the experiment of stimulating PBMCs with YF-17D, we selected for genes that were up 

or down regulated by a factor of 0.5 fold in the Log2 scale, after either 3 or 12 hours of 

stimulation with YF-17D, compared to cells cultured in media alone. We performed the 

student t-test for comparing YF-17D to media alone at 3 and 12 hours.  The genes 

commonly modulated in both independent trials are analyzed for statistically 

overrepresented transcription factor binding sites in TOUCAN v3.0.2 using the 

TRANSFAC v7.0 public database of eukaryotic transcription factors.   

 

 Discriminant Analysis via Mixed Integer Programming.  

There are five fundamental steps in discriminant analysis: (i) determine the data for input 

and the predictive output classes; (ii) gather a training set of data (including output class) 

from human experts or from laboratory experiments.  Each element in the training set is 

an entity with corresponding known output class; (iii) determine the input attributes to 

represent each entity; (iv) identify discriminatory attributes and develop the predictive 

rules; (v) validate the performance of the predictive rules. 

 Utilizing the technology of large-scale discrete optimization and support-vector 

machines, we have  developed novel predictive models16,17   DAMIP, that simultaneously 

include the following features: the ability to classify any number of distinct groups; the 

ability to incorporate heterogeneous types of attributes as input; a high-dimensional data 

transformation that eliminates noise and errors in biological data; constraints to limit the 

rate of misclassification, and a reserved-judgment region that provides a safeguard 
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against over-training (which tends to lead to high misclassification rates from the 

resulting predictive rule);  and successive multi-stage classification capability to handle 

data points placed in the reserved judgment region. 

In our analysis, each Trial forms a data set. The entity in the dataset is an 

individual vaccinee, and the measurable attributes for each entity consists of the time 

measurement of gene array data described in the data collection part. For the T cell 

analysis, the group in each Trial is determined by the magnitude of the CD8+ T cell 

response. There are about 800 total measurable gene attributes (of mixed time points) for 

each entity. We have 2 groups of vaccinees in the T cell analysis (“high” group and 

“low” group). Each experiment consists of the following two parts: a) Develop a 

classification rule using a training dataset (Trial 1), b) Use the rule developed from the 

training set to predict the group status of independent unknown entities (from Trial 2). 

The experiment is then repeated using Trial 2 as the training set and Trial 1 for blind 

prediction. For the B cell analysis, the group in each Trial is determined by the magnitude 

of the neutralizing antibody titers. Again there are the “high” and “low” groups. There are 

about 1600 total measurable gene attributes (of mixed time points) for each entity. 

 Performance and validation of the rules is reported in: (a) 10-fold cross validation 

which reports the unbiased estimate of classification correctness in the training stage, and 

(b) in 1-fold and 10-fold blind prediction of the independent Trial entities which report 

the prediction accuracy of new and unknown data.  While 10-fold cross validation offers 

the confidence interval and reliability of the rules generated and tested within the same 

Trial of patients, the blind test provides a further measurement of its practical usage 

across different independent Trials.  

 10-fold cross-validation: To obtain an unbiased estimate of the reliability and 

quality of the derived classification rules, ten-fold cross validation is performed. In the 

ten-fold cross validation procedure, the training set is randomly partitioned into ten 

subsets of roughly equal size. Ten computational experiments are then run, each of which 

involves a distinct training set made up of nine of the ten subsets and a test set made up 

of the remaining subset. The classification rule obtained via a given training set is applied 

to each point in the associated test set to determine to which group the rule allocates it. 

The process is repeated until each subset has been used once for testing. The cumulative 
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measure of correct classification of the ten experiments provides the unbiased estimation 

of correct classification.   

 1-fold blind predictions: In 1-fold blind prediction, a classification rule is first 

developed using all the training data. This rule is then applied to each entity in the blind 

data to predict its group status. The percent of correct prediction of the blind data entities 

is recorded, providing a measure of overall prediction accuracy. 

 10-fold blind predictions: In 10-fold blind predictions, we generate 10 

classification rules as in 10-fold cross-validation – each rule is generated using nine of 

the ten subsets of the training sets. Then, the blind data (all of them) are tested on this 

rule. This process is repeated ten times, and the average cumulative prediction forms the 

unbiased prediction correctness of the blind data.  

 To develop the classification rule from a given training set, the training data is fed 

into the DAMIP model. The feature selection algorithm inside the model will then 

determine, out of the large set of gene measurements, a subset of genes – a discriminatory 

signature -- that may help to classify entities in the training set into the two groups. The 

classification rate associated with the signature set (obtained by performing ten fold cross 

validation using the selected signature features) is then recorded. This “learning” process 

is repeated, each time an updated discriminatory signature set and associated 

classification rate are obtained and recoded. Users can pre-set the number of 

discriminatory gene measurements that are desired in each signature set. Since the 

number of patients in each clinical Trial is rather small, we set each signature set to 

contain at most 5 gene attributes. Users can also pre-set an appropriate target value for 

the classification rate. Thus the machine will continue to learn (generate signatures sets 

and associated classification rates) and terminate when the target classification rate is 

achieved, or when it reaches a level of correct classification and cannot improve any 

further (in this case, it may not have achieved the pre-set target rate). In our study, the 

learning process was terminated when the resulting classification rate reached 80%. 

Developing a classification rule is computationally expensive due to the combinatorial 

nature of the feature selection process. However, once a rule has been obtained, it is easy 

and inexpensive to apply it to new unknown entities to predict group membership.  
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 To perform a blind test, simply input each entity from an independent Trial and 

process it through the classification rule (obtained from a training set). This takes less 

than a second of CPU time. 

 In Brooks and Lee, 200817, it was proved the classification rule resulted from 

DAMIP is strongly universally consistent. It consistently results in low inter-group 

misclassification rates; it is insensitive to the specification of prior probabilities, yet 

capable of reducing misclassification rates when the number of training observations 

from each group is different. Further, the DAMIP rule is proved to be stable regardless of 

the proportion of training observations from each group. 

 With regards to why Trial 1 -> Trial 2 DAMIP predictions were significantly 

more successful for the antibody titer predictions that the Trial 2 -> Trial 1, since As Trial 

2 is smaller than Trial 1, one possible explanation for the discrepancies in predictive 

power is that the ranges of individual variability in genetic responses is more completely 

captured in Trial 1 than Trial 2.  In other words, out of the ranges of responses that 

humans can make, Trial 2 may contain a subset of those found in Trial 1.  Therefore 

while Trial 1 based models only need to interpolate predictions for Trial 2, Trial 2 based 

models may need to extrapolate predictions for some of the Trial 1 subjects.  

“Interpolation” and “extrapolation” are traditionally thought of in terms of polynomial 

functions, in which case extrapolating data is associated with greater uncertainty and 

greater likelihood of inaccurate prediction. 
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Supplementary Figure 1. Cytokine and dendritic cell responses to YF-17D. (a) The maximum fold change in cytokine expression out of days 3 or 7 is 
calculated and depicted as a heat map with GeneSpring software. (b) Out of the cytokines that are induced by vaccination, IP-10 and IL1A are significantly 
upregulated on day 7. Data were normalized using the pre-vaccination cytokine level [i.e. Log2(Cd)-Log2(C0), where Cd is the cytokine concentration on day d].  
(c) The percentage of CD86+ myeloid dendritic cells, plasmacytoid dendritic cells, total monocytes, or inflammatory CD16+ monocytes is first calculated for each 
day.  The Log2 transformed values for the percentages of CD86+ cells were normalized relative to baseline levels. The change in the percentage of CD86+

positive cells is then calculated for each day relative to day 0 and tested for significance.  The determination of significant changes was based on ANOVA 
followed by Tukey’s multiple test comparison on the 15 subjects of Trial 1.  * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Supplementary Figure 2. Identification of commonly induced genes in two independent vaccine trials. (a) The fold change in expression is calculated for 
each gene on days 3 and 7 relative to day 0.  Genes with Log2 fold changes > 0.5 or < -0.5 in at least 60% of subjects are then selected.  The linear expression 
values for these genes are then analyzed for significance in GeneSpring.  (b) Genes with a Benjamini and Hochbery False Discovery Rate less than 0.05 for 
each trial are then compared.  The genes identified as being significantly changed on days 3 or 7 are analyzed level 4 Gene Ontology terms using DAVID to 
identify associations among the genes.  The results are based on 15 subjects in Trial 1 and 10 subjects in Trial 2.
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Supplementary Figure 3. Network of anti-viral genes in response to YF-17D. Ingenuity Pathways Analysis of genes identified in Fig. 1b as being 
regulated significantly in two independent trials and supplemented with transcription factor binding motif information from TOUCAN for IRF7 and IRF9 
(Supplementary Table 2 online).
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Supplementary Figure 4. Induction of complement C3a by YF-17D. Plasma concentrations of C3a is measured by ELISA to confirm activation of the 
complement pathways. The determination of significant changes was based on ANOVA followed by Tukey’s multiple test comparison on the 10 subjects of 
Trial 2.  * P < 0.05.
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Supplementary Figure 5. YF-17D induces NF-κB activation via RIG-I and MDA-5. Human embryonic fibroblasts (HEK293 cell line) were co-
transfected with plasmids encoding luciferase driven by an NF-κB promoter, plus a plasmid encoding either MDA-5 or RIG-I for 24 hr. Then cells were 
stimulated with poly-IC or YF-17D for 6 hr or 48hr. NF-κB induction was detected by luciferase activity. Representative of 2 independent experiments. 
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Supplementary Figure 6. Induction of anti-viral genes in PBMCs stimulated in vitro with YF-17D. PBMCs from 2 healthy unvaccinated donors were 
isolated and plated at 1 x 106 cells per well in 48-well plates with 1 ml RPMI with 10% FBS and penicillin/streptomycin.  The cells were cultured in the presence 
or absence of YF-17D at a MOI of 1.  After 3 and 12 hours, RNA was isolated from the cells and processed for microarray analysis.  For these experiments, the 
Affymetrix Human Genome 133A 2.0 Array was used.  This microarray contains a subset of genes found on the Human 133 Plus 2.0 Array, which was used in 
the analysis of the vaccinees.  We selected for genes that were up or down regulated by a factor of 0.5 fold in the Log2 scale, after either 3 or 12 hours of 
stimulation with YF-17D, compared to cells cultured in media alone. The student t-test was used to compare YF-17D to media alone at 3 and 12 hours.
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Supplementary Figure 7. Correlation coefficients and P-values of stress response genes that correlate with the magnitude of the CD8+ T cell 
response. (a) Calreticulin at Day3. (b) Protein disulfide isomerase family A, member 5 at Day3. (c) Protein disulfide isomerase family A, member 4 at 
Day3. (d) Protein disulfide isomerase family A, member 4 at Day7. (e) Nuclear receptor subfamily 3, group C, member 1(glucocorticoid receptor) at Day3. 
(f) Eukaryotic translation initiation factor 2 alpha kinase 4 at Day7.  The data are from the 15 subjects of Trial 1.
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Supplementary Figure 8.  Genomic signatures that correlate with the magnitude of the antibody response. Genes with a Log2 fold change of > 0.5 or < -
0.5 in greater than 25% of the subjects are first selected.  Next the slope P-value of the day 60 antibody titers versus Log2 fold change in gene expression was 
calculated for each remaining gene.  Those genes with P < 0.05 are identified as having a significant relationship between early gene expression changes and 
later antibody responses.  Unsupervised principle component analysis of the gene expression for each subject on both days 3 and 7 reveals that subjects could 
be segregated based on antibody titers above and below 170. Data are from the 15 subjects of Trial 1.
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Supplementary Table 1
Symbol Select Aliases ANOVA Only Pre-Filtered RT-PCR RT-PCR P -value ANOVA Only vs  RT-PCR Pre-Filtered vs RT-PCR
OASL 1 1 1 0.00048 Confirmed Confirmed
PARP12 0 1 1 0.00656 Not Detected but Confirmed Confirmed
PLSCR1 0 1 1 0.00056 Not Detected but Confirmed Confirmed
EIF2AK2 PKR 1 1 1 0.00377 Confirmed Confirmed
KLHDC7B 1 1 0 NA Not Tested Not Tested
IFIH1 MDA-5 0 1 1 0.00218 Not Detected but Confirmed Confirmed
IRF7 1 1 1 0.00010 Confirmed Confirmed
RSAD2 1 1 1 0.00064 Confirmed Confirmed
DDX58 RIG-I 0 1 1 0.01599 Not Detected but Confirmed Confirmed
TDRD7 0 1 0 NA 0 Not Tested
IFIT1 0 1 0 NA 0 Not Tested
HERC5 1 1 1 0.00016 Confirmed Confirmed
SIGLEC1 1 1 1 0.00005 Confirmed Confirmed
MS4A4 0 1 0 NA 0 Not Tested
TRIM5 0 1 0 NA 0 Not Tested
SERPING1 C1IN 0 1 1 0.00838 Not Detected but Confirmed Confirmed
PNPT1 0 1 0 NA 0 Not Tested
IFI44L 1 1 1 0.00000 Confirmed Confirmed
OAS2 1 1 1 0.00575 Confirmed Confirmed
UBE2L6 0 1 0 NA 0 Not Tested
RTP4 0 1 0 NA 0 Not Tested
FAM70A 1 1 1 0.41473 Not Confirmed Not Confirmed
IFIT2 0 1 0 NA 0 Not Tested
XAF1 0 1 1 0.00005 Not Detected but Confirmed Confirmed
TLR7 0 1 1 0.04090 Not Detected but Confirmed Confirmed
ISG15 1 1 1 0.00005 Confirmed Confirmed
FBXO6 0 1 0 NA 0 Not Tested
IFIT3 0 1 0 NA 0 Not Tested
CD38 0 1 1 0.03109 Not Detected but Confirmed Confirmed
SAMD9L 0 1 0 NA 0 Not Tested
RNF36 0 1 0 NA 0 Not Tested
RGL1 1 1 0 NA Not Tested Not Tested
FER1L3 0 1 0 NA 0 Not Tested
TRIM22 0 1 0 NA 0 Not Tested
LGALS3BP 1 1 0 NA Not Tested Not Tested
MX1 1 1 1 0.00005 Confirmed Confirmed
PARP9 0 1 1 0.00117 Not Detected but Confirmed Confirmed
PARP14 0 1 1 0.09838 0 Not Confirmed
LAMP3 1 1 1 0.37645 Not Confirmed Not Confirmed
MARCKS 0 1 0 NA 0 Not Tested
IFI6 1 1 0 NA Not Tested Not Tested
OAS1 0 1 1 0.00116 Not Detected but Confirmed Confirmed
JUN 0 1 1 0.00007 Not Detected but Confirmed Confirmed
OAS3 0 1 1 0.00188 Not Detected but Confirmed Confirmed
HERC6 1 1 0 NA Not Tested Not Tested
IFI27 1 1 0 NA Not Tested Not Tested
DDX60L 0 1 0 NA 0 Not Tested
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EPSTI1 1 1 1 0.00070 Confirmed Confirmed
DHX58 LGP2 1 1 1 0.04016 Confirmed Confirmed
C3AR1 0 1 1 0.07323 0 Not Confirmed
DDX60 0 1 0 NA 0 Not Tested
N/A 1 1 0 NA Not Tested Not Tested
CDKN1C 0 1 0 NA 0 Not Tested
N/A 0 1 0 NA 0 Not Tested
GBP1 0 1 1 0.07072 0 Not Confirmed
NEXN 0 1 0 NA 0 Not Tested
CXCL10 IP10 0 1 1 0.22878 0 Not Confirmed
N/A 0 1 0 NA 0 Not Tested
STAT1 0 1 0 NA 0 Not Tested
N/A 0 1 0 NA 0 Not Tested
N/A 0 1 1 0.05277 0 Not Confirmed
SAMD9 0 1 0 NA 0 Not Tested
CMPK2 0 1 0 NA 0 Not Tested
IFI44 1 1 1 0.00000 Confirmed Confirmed
MX2 0 1 1 0.00601 Not Detected but Confirmed Confirmed

22 65 33

Detected by Filter and p < 0.05 by RT-PCR 13 26
Detected by Filter and p > 0.05 by RT-PCR 2 7

Detected by Filter but Not Tested by RT-PCR 7 32
Not Detected by Filter but Confirmed by RT-PCR 13 0

Not Detected by Filter and Not Confirmed by RT-PCR 30 0
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Supplementary Table 1: Strategies used to identify genes induced by YF-17D in the majority of vaccinees.

Footnote: This table compares the genes identified using 2 independent strategies: a ‘pre-filtering strategy,’ and a strategy of testing the entire database with 
ANOVA without pre-filtering.  In the ‘pre-filtering’ strategy, genes with normalized Log2 transformed fold change gene expression values >0.5 or <0.5 in > 60% of 
the subjects at days 3 or 7 were identified, and then tested for statistical significance by ANOVA adjusted with the Benjamini and Hochberg False Discovery 
Rate method with a cutoff of 0.05 in Genespring.  This analysis revealed a set of 65 genes that were commonly induced in both Trials 1 and 2 (indicated by a ‘1’
in the column entitled ‘Pre-Filtered’). Of these 65 genes, the ones we chose to validate by RT-PCR are indicated by a ‘1’ in the column entitled ‘RT-PCR’ The 
RT-PCR P-values, and the results of this validation process, are indicated in the columns ‘RT-PCR’, and ’Pre-Filtered versus RT-PCR’, respectively. In the 
second strategy not involving pre-filtering, we tested the entire dataset using ANOVA (column entitled ’ANOVA only’), and this yielded 22 genes which were a 
subset of the 65 genes identified via the pre-filtering method. The majority of these genes were confirmed by RT-PCR (column entitled ‘ANOVA vs RT-PCR’). 
Importantly, many genes that were not included in this subset of 22 genes were also confirmed by RT-PCR. Furthermore, the genes encoding CD38 and IP-10, 
which we have demonstrated to be expressed at the protein level (Fig. 2 and Supplementary Fig.  1), were not present amongst the 22 genes. Thus, while this 
second method of analysis omitting the pre-filtering step may result in a more rigorous statistical analysis, it may be too stringent and exclude potentially 
biologically relevant genes. 
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Description Feature Name Factor Name N P-value
Interferon-Stimulated Response Element M00258-V$ISRE_01 IRF9 27 2.49E-06
Interferon Regulatory Factor 7 M00453-V$IRF7_01 IRF7 30 7.64E-04
Sterol Regulatory Element-Binding Protein 1 M00220-V$SREBP1_01 SREBF1 15 0.005390915

Supplementary Table 2: Two transcription factors induced by YF-17D in two independent trials. 

Footnote: The 65 genes which were found to be induced by YF-17D in Fig. 1b were imported into TOUCAN for transcription factor binding site (TFBS) 
analysis, and 44 out of the 65 genes were recognized by TOUCAN. The TRANSFAC v7.0 database of eukaryotic transcription factors was used as the 
reference for transcription factor binding site motifs.  Binding site motifs were scanned in the DNA sequence 2000 bases upstream through 200 bases 
downstream flanking the first exon of each gene with a double prior of 0.1 and the genomic background noise model based on the third order Markov 
Model for the Human Eukaryotic Promoter Databse. The TFBSs found to have a statistically overrepresented frequencies including: interferon-stimulated 
response element (ISRE), interferon regulatory factor 7 (IRF7), and sterol regulatory element-binding protein 1 (SREBF1).
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0.4147Hs00215705_m1Hs.437563
0.2288Hs00171042_m1Hs.632586
0.3765Hs00180880_m1Hs.518448
0.0732Hs00269693_s1Hs.591148
0.0528Hs00234829_m1Hs.651258
0.0022Hs00223420_m1Hs.163173
0.0311Hs00277045_m1Hs.479214
0.0707Hs00266717_m1Hs.62661
0.0409Hs00152971_m1Hs.443036
0.0160Hs00204833_m1Hs.190622
0.0402Hs00225561_m1Hs.55918
0.984Hs00393814_m1Hs.518203

0.0057Hs00159719_m1Hs.414332
0.0060Hs00159418_m1Hs.926
0.0005Hs00388714_m1Hs.118633
0.0006Hs00275514_m1Hs.130759
0.0066Hs00224241_m1Hs.12646
0.0019Hs00196324_m1Hs.528634
0.0001Hs99999141_s1Hs.525704
0.0007Hs00264424_m1Hs.546467
0.0012Hs00242943_m1Hs.524760
0.0012Hs00230231_m1Hs.518200
0.0084Hs00163781_m1Hs.384598
0.0006Hs00369813_m1Hs.17518
0.0001Hs00242190_g1Hs.166120
0.0002Hs00180943_m1Hs.26663
0.0001Hs00213882_m1Hs.441975
0.0001Hs00192713_m1Hs.458485
0.0004Hs00224991_m1Hs.31869
0.0001Hs00182073_m1Hs.517307
0.0038Hs00169345_m1Hs.131431
0.0000Hs00199115_m1Hs.389724
0.0000Hs00197427_m1Hs.82316
P-valueTaqMan AssayGene ID

Supplementary Table 3: RT-PCR confirmation of the genes induced by YF-17D. 

Footnote: Of the 65 genes induced in most vaccinees (Fig. 1), we selected 33 genes for RT-PCR analysis. We assayed 10 day 3 versus day 0 and 15 day 7 
versus day 0 time points from the 15 subjects in Trial 1.  This revealed that 26 genes also have significant modulation as measured by RT-PCR.  The P-values 
are testing the result of ANOVA on the RT-PCR data for the fold changes on days 0, 3, and 7. 

FAM70A
CXCL10, IP-10
LAMP3
C3AR1
STAT1
IFIH1, MDA-5

CD38
GBP1
TLR7
DDX58, RIG-I
DHX58, LGP2
PARP14
OAS2
MX2
OASL
PLSCR1
PARP12
OAS3
JUN
EPSTI1
OAS1
PARP9
SERPING1, C1IN
RSAD2
IRF7
HERC5
XAF1
ISG15
SIGLEC1
MX1
EIF2AK2, PKR
IFI44L
IFI44
Symbol
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Supplementary Table 4:  The genes validated by ClaNC as being predictive of CD8+ T cell responses from Fig. 4.  

Symbol Gene Name UniGene ID GeneBank Day
C1QB Complement component 1, q subcomponent, B chain Hs.8986 CA307782 3

EIF2AK4 Eukaryotic translation initiation factor 2 alpha kinase 4 Hs.412102 BM978043 7

MEF2A MADS box transcription enhancer factor 2, polypeptide A Hs.268675 Y16312 7

SLC2A6 Solute carrier family 2, member 6 Hs.244378 AJ011372 7

ALDH16A1 Aldehyde dehydrogenase 16 family, member A1 Hs.355398 BU741307 7

ALDH3B1 Aldehyde dehydrogenase 3 family, member B1 Hs.523841 BC014168 3

ASGR2 Asialoglycoprotein receptor 2 Hs.16247 CR594935 3

ASGR2 Asialoglycoprotein receptor 2 Hs.16247 CR594935 7

ATP6V1E1 ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1 Hs.517338 AW804839 3

BIRC3 Baculoviral IAP repeat-containing 3 Hs.127799 BQ004306 7

BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like Hs.131226 NM_004331 7

BCKDK Branched chain ketoacid dehydrogenase kinase Hs.513520 AF026548 3

CAMKK2 Calcium/calmodulin-dependent protein kinase kinase 2, beta Hs.297343 NM_172226 3

CALR Calreticulin Hs.515162 BM806569 3

CRAT Carnitine acetyltransferase Hs.12068 AI809851 3

CTSB Cathepsin B Hs.520898 NM_001908 3

CD69 CD69 molecule Hs.208854 AU309880 3

CDNA clone IMAGE:5271145 Hs.385760 BC038776 7

N/A   CDNA FLJ20387 fis, clone KAIA4452 Hs.636439 AK000394 7

N/A CDNA: FLJ20905 fis, clone ADSE00244 Hs.612877 AK024558 3

CENPB Centromere protein B, 80kDa Hs.516855 BM703471 3

CXCR6 Chemokine (C-X-C motif) receptor 6 Hs.34526 CR624554 3

CXCR7 Chemokine (C-X-C motif) receptor 7 Hs.471751 BX111686 3

CXCR7 Chemokine (C-X-C motif) receptor 7 Hs.471751 BX111686 7

DEFA4 Defensin, alpha 4, corticostatin Hs.591391 NM_001925 7

EMILIN2 Elastin microfibril interfacer 2 Hs.532815 AF270513 7

ETV3 Ets variant gene 3 Hs.352672 AF218540 3

N/A 
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Supplementary Table  4 Continued

Symbol Gene Name UniGene ID GeneBank Day
EIF4G3 Eukaryotic translation initiation factor 4 gamma, 3 Hs.467084 AF012072 7

F-box protein 15 Hs.465411 DB522515 7

GPR18 G protein-coupled receptor 18 Hs.631765 AW574811 7

GBGT1 Globoside alpha-1,3-N-acetylgalactosaminyltransferase 1 Hs.495419 CR622726 3

GAA Glucosidase, alpha; acid Hs.1437 AL043560 3

GAS2L1 Growth arrest-specific 2 like 1 Hs.322852 BC001782 3

HEATR3 HEAT repeat containing 3 Hs.647381 AW802598 7

Hemoglobin, alpha 1 Hs.449630 AA331275 7

HBB Hemoglobin, beta Hs.523443 BP424559 3

HBB Hemoglobin, beta Hs.523443 BP424559 7

HBZ Hemoglobin, mu Hs.647389 CR597411 7

HtrA serine peptidase 4 Hs.322452 AL574735 3

FLJ10847 Hypothetical protein FLJ10847 Hs.232054 AI014423 7

Hypothetical protein LOC731157 Hs.551062 AF150372 7

IMPDH1 IMP (inosine monophosphate) dehydrogenase 1 Hs.534808 BU687473 3

JUN Jun oncogene Hs.525704 NM_002228 3

C8orf82 Chromosome 8 open reading frame 82 Hs.105685 AA532638 3

C8orf82 Chromosome 8 open reading frame 82 Hs.105685 AA532638 7

MYL4 Myosin, light chain 4, alkali; atrial, embryonic Hs.463300 AJ706934 7

NANS N-acetylneuraminic acid synthase (sialic acid synthase) Hs.522310 AA639295 7

NRGN Neurogranin (protein kinase C substrate, RC3) Hs.524116 NM_006176 3

NAPRT1 Nicotinate phosphoribosyltransferase domain containing 1 Hs.493164 BM674162 3

NAPRT1 Nicotinate phosphoribosyltransferase domain containing 1 Hs.493164 BM674162 7

NP Nucleoside phosphorylase Hs.75514 AW519082 3

NUDT14 Nudix (nucleoside diphosphate linked moiety X)-type motif 14 Hs.526432 CA775837 3

PNPLA6 Patatin-like phospholipase domain containing 6 Hs.631863 DN993154 3

FBXO15 

HBA1 

HTRA4 

SLC47A1 
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Symbol Gene Name UniGene ID GeneBank Day
PRAM1 PML-RARA regulated adaptor molecule 1 Hs.465812 AW135236 3

PRAM1 PML-RARA regulated adaptor molecule 1 Hs.465812 AW135236 7

RAB8B RAB8B, member RAS oncogene family Hs.389733 NM_016530 3

RGS1 Regulator of G-protein signalling 1 Hs.75256 BU783195 3

NDRG2 Selenium binding protein 1 Hs.632460 CN262111 7

STK17A Serine/threonine kinase 17a (apoptosis-inducing) Hs.268887 NM_004760 3

SMARCD3 SMARC, subfamily d, member 3 Hs.647067 CA449683 3

SLC16A5 Solute carrier family 16, member 5 Hs.592095 AI953766 3

SLC2A6 Solute carrier family 2, member 6 Hs.244378 AJ011372 3

SLC25A13 Solute carrier family 25, member 13 (citrin) Hs.489190 AJ496569 7

SLC39A11 Solute carrier family 39 (metal ion transporter), member 11 Hs.221127 BQ017291 7

SAT2 Spermidine/spermine N1-acetyltransferase 2 Hs.10846 CK821652 3

SAT2 Spermidine/spermine N1-acetyltransferase 2 Hs.10846 CK821652 7

SPON2 Spondin 2, extracellular matrix protein Hs.302963 DB319294 7

Transcribed locus Hs.642649 BE464165 3

TBC1D7 TBC1 domain family, member 7 Hs.484678 BF111612 3

TEP1 Telomerase-associated protein 1 Hs.508835 CD623678 3

THAP11 THAP domain containing 11 Hs.632200 BP395356 3

ADSSL1 Transcribed locus Hs.375179 AA927922 7

ZEB1 Transcribed locus Hs.593418 AI806174 7

ASGR2 Transcribed locus Hs.595979 H47090 7

ASGR2 Transcribed locus Hs.595979 H47090 3

CPEB3 Transcribed locus Hs.603218 AI123721 7

N/A Transcribed locus Hs.604822 AI370631 3

N/A Transcribed locus Hs.607204 AI862844 3

Supplementary Table  4 Continued

N/A
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Symbol Gene Name UniGene ID GeneBank Day
N/A Transcribed locus Hs.649837 AA528126 3

N/A Transcribed locus Hs.651406 AA600976 3

Transcribed locus Hs.652017 CA844149 3

Transcribed locus Hs.652017 CA844149 7

Transcribed locus Hs.652922 CA313785 3

N/A Transcribed locus Hs.604290 AI281031 7

TCEAL4 Transcription elongation factor A (SII)-like 4 Hs.194329 BF718552 3

TMEM176A Transmembrane protein 176A Hs.647116 BM663079 3

TMOD1 Tropomodulin 1 Hs.494595 AK095748 7

TUFM Tu translation elongation factor, mitochondrial Hs.12084 AA983218 3

TNFSF14 Tumor necrosis factor (ligand) superfamily, member 14 Hs.129708 AY028261 3

FERMT3 UNC-112 related protein 2 Hs.180535 BF975449 3

ULK2 Unc-51-like kinase 2 (C. elegans) Hs.168762 NM_014683 7

WDR40A WD repeat domain 40A Hs.651274 AA446117 7

ZFP82 Zinc finger protein 545 Hs.558734 BU618382 3

ZNF606 Zinc finger protein 606 Hs.652113 BM713422 3

ZSWIM5 Zinc finger, SWIM-type containing 5 Hs.135673 BQ448086 7

ZYX Zyxin Hs.490415 CB160586 3

Supplementary Table  4 Continued

N/A

N/A

N/A
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